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Nonlinear dynamics of a slow laminar flame front subject to the Landau-Darrieus instability is investigated
by means of numerical simulations of the Frankel equation, when the expansion degreeg5(ru2rb)/ru is
small ~hereru andrb are the densities of the unburned and burned ‘‘gases,’’ respectively!. Only burning in
two-dimensional space is considered in our simulations. The observed acceleration of a front wrinkled by the
instability can be ascribed to the development of a fractal structure along the front surface with typical spatial
scales being between the maximum and the minimum truly unstable wavelengths. It is found that the fractal
excessDD5D21 decreases rapidly with decreasing ofg, to a first approximation asDD5D0g

2, whereD is
the fractal dimension of the front. Our rough estimation ofD0 givesD0'0.3. The low accuracy of theD0

estimation is caused by certain peculiarities of the Frankel equation that lead to extreme difficulties of its
simulation even with the aid of supercomputers wheng&0.320.4. It is shown, however, thatD0 can be
calculated also from the statistical properties of the Sivashinsky equation, which is easier to simulate, though
the fractal excess for the Sivashinsky equation itself is equal to 0~in a certain sense!. The other important result
of our simulations is that the front self-intersections play an extremely weak role wheng is small. @S1063-
651X~96!02605-0#

PACS number~s!: 47.11.1j, 47.20.2k, 47.53.1n, 82.40.Py

I. INTRODUCTION

In large volumes of premixed fuel, the combustion pro-
cess, or flame, can propagate either in the form of a super-
sonic detonation wave or in the form of a relatively slow
deflagration wave@1#. In the first case, the unburned fuel is
ignited by a shock front propagating slightly ahead of the
burning zone itself. In the second case, ignition of new fuel
portions is governed by heat and active reactant transport,
i.e., by thermal conduction and diffusion. In the latter case,
the flame propagation velocity can be much less than the
sound velocity. So the gas pressure is almost uniform and
both burned and unburned gases can be treated as almost
incompressible fluids outside the flame zone.

The subject of this paper is the slow deflagration regime
of the flame propagation. It is well known@1–5# that large
portions of a slow planar flame front are unstable with re-
spect to the large-scale bending. This universal instability,
which is called the Landau-Darrieus~LD! instability, does
not depend, for sufficiently long wavelengths, on complex
physical and chemical processes that take place in the burn-
ing zone and in the presence of various short-wavelength
instabilities caused by these processes~see, for example, Ref.
@5#!. Development of the LD instability depends only on the
sign of Dr5ru2rb , whereru and rb are densities of the
unburned and burned ‘‘gases,’’ respectively. The LD insta-
bility of planar flame fronts with respect to large-scale bend-
ing takes place if and only ifDr.0. We suppose below that
there are no other instabilities of the slowly moving flame
fronts except for the LD instability.

As explained in the original paper by Landau@2#, the LD
instability leads to wrinkling or roughening of the front sur-
face, i.e., to increasing its area with respect to the smooth
front, and consequently to acceleration of the front propaga-

tion. In extreme cases, the LD instability can lead to a tran-
sition from the regime of slow flame propagation to the re-
gime of detonation. These features of the LD instability play
an important role in many physical phenomena such as usual
chemical burning of gases in terrestrial conditions, explosive
boiling of liquids @6#, dynamics of thermally bistable gas@7#,
and thermonuclear burning of the stellar core in the progress
of supernova explosions of type Ia@8,9#.

It is necessary to emphasize here that usually there is a
vast range of spatial scales unstable with respect to the LD
instability in the astrophysical objects such as supernova ex-
plosions mentioned above. A very rough estimation of the
ratio between the maximum and the minimum scales of front
wrinkles can be given by the ratio of the radius of the con-
sidered system to a laminar flame thickness. This ratio can
reach 101021013 for the case of supernova explosions, which
excludes any possibility of direct numerical simulations of
the LD instability effects on such conditions and requires an
analytical approach to describe the propagation of a wrinkled
front.

A proper heuristic idea for this case is the concept of
fractal surfaces and appropriate fractal dimensions. The idea
of applying fractals to the flame physics was put forth in
Refs. @10–12#. By a fractal surface we mean an irregular
surface whose statistical properties change self-similarly
with a change of the considered scale. A scale range in which
this similarity holds, which will be called the similarity
range, is assumed to be sufficiently wide in logarithmic
scale. Letlmin andlmax be, respectively, the minimum and
the maximum lengths belonging to this similarity range. The
fractal dimension of the front surface is a numberD, which
obeys the inequality 2<D<3, such that the total area of the
typical portion of this surface with a diameterL is propor-
tional toLD, whenL varies in the rangelmin<L<lmax.
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If the front structure behaves like a usual smooth surface
with D52 outside the similarity range, then the area of the
front surface, corresponding to the flame front developing
from a small igniting region, can be estimated as

S'4pR2S lmax

lmin
D D22

, ~1!

whereR is the radius of a sphere whose volume is equal to
the volume occupied by the burned gas. Since the mass flux
across the flame front depends only weakly on the front cur-
vature, when the curvature radius belongs to the similarity
range, the mean velocity of the front relative to the burned
gas

u5
dR

dt
~2!

should be renormalized as

u5u0S lmax

lmin
D D22

, ~3!

whereu0 is the propagation velocity of the planar laminar
front measured relative to the burned gas.

The features of the front surface should depend on the
expansion degree

g5
ru2rb

ru
~4!

and onR. If a fractal surface is a good enough approxima-
tion to the front properties, thenlmin , lmax, andD should
tend, after sufficiently long temporal evolution of the propa-
gating flame, i.e., for sufficiently largeR, to

lmin5 lmin~g!, ~5!

lmax5amax~g!R, ~6!

D5D~g!. ~7!

If we definelmin as a mean distance between adjacent local
maxima of absolute values of the front principal curvatures
multiplied by 2, then Eqs.~1! and ~3! define D(g) and
amax in the limit ofR→`. Determination oflmin , lmax, and
D, whenR→`, i.e., of lmin(g), amax(g), andD(g), is the
main objective of the theory of moving wrinkled flames.

It is impossible to do this in one step. So we shall inves-
tigate here only a particular case when the expansion degree
g tends to zero. A solution of this problem can help to ap-
proximate the flame propagation in some applications of this
theory. The most striking example is the supernova explo-
sions of type Ia mentioned above, which requires evidently
the development of the theory and where typical values of
g belong to the range of 0.1–0.5@12,15#, with the major
portion of the flame propagation region corresponding to the
g range of 0.2–0.3. Thus the limit ofg→0, which will be
considered in this paper, can be a satisfactory zeroth-order
approximation. Definitions~1!–~3! are widely used in the
literature. See, for example, Refs.@13,14#.

We recall here some methods used for the description of
the thin front dynamics. By the way, there are many simi-
larities between the thermally bistable gas dynamics and the
slow conductive flame front propagation. The most general
equations neglecting any reactions and diffusion outside a
very thin front were quoted in a paper@7# devoted to the
thermally bistable gas dynamics. The relevant set of equa-
tions is called there a system of ‘‘superreduced equations.’’
The only consequence of the finite front thickness was the
existence there of the so-called Markstein diffusivityDM
@16#, which describes the tendency of a flame to smooth out
the roughness of its front at small spatial scales. A method
for the calculation of Markstein diffusivity, which is suitable
in some cases just for thermally bistable gases, was presented
in Ref. @7#. Other methods that are applicable for investiga-
tions of many local properties of the flame fronts and are
more appropriate for chemical reactions, obeying the Arrhen-
ius law with the high value of the so-called Zeldovich num-
ber, were published earlier@17,18#. The case of the moderate
Zeldovich number is considered in Ref.@19#.

If the expansion degreeg is sufficiently small so that the
flow of matter both behind and ahead of the front can be
approximated by the potential velocity field, then the equa-
tions of matter motion outside the front can be solved in
general and the whole set of front dynamics equations can be
reduced to a single equationon the front surface. This was
done by Frankel@20#. The well known Sivashinsky equation
@21,22#, which is well known in investigations of wrinkled
surfaces and moving fronts of different nature, is derived by
Frankel@20# from his equation assuming a small slope of the
disturbed front with respect to the reference plane or sphere.
The Frankel as well as the Sivashinsky equations will be
widely used in the present work.

There is some experimental evidence@11# that the fractal
dimension of the slow flame front could be equal to 7/3. This
seems to have been confirmed recently by the relevant simu-
lations of the Sivashinsky equation@23#. These results, if
they have a wide field of applicability, could lead to drastic
consequences in the theory of supernova explosions: due to
Eq. ~3! the slow flame propagation would virtually be impos-
sible forD57/3, given the enormous similarity range in pre-
supernova white dwarfs. The results of Refs.@11,23# as well
as of Refs.@12,15# have encouraged us to carry out this work
where we focus our attention more carefully to flame fronts
wrinkled by the LD instability under the condition of low
expansion degreeg.

Our main results are as follows.

~i! The bending degree of the flame front under the action
of the fully developed LD instability depends strongly on the
expansion degreeg, as seen from numerical simulations of
the Frankel equation.

~ii ! Decreasingg leads to very weak wrinkling of the
flame and to a weak role of the front ‘‘self-intersections.’’

~iii ! The fractal excess of the wrinkled front surface can
be approximated by the formula

DD5D0g
2, ~8!

with its functional form proven analytically and verified nu-
merically. Our numerical simulations giveD0'0.3 for the
two-dimensional case when the front is actually a curve.
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~iv! The fractal excess of the Sivashinsky equation deter-
mined by using Eq.~3! is rigorously equal to 0.

~v! Nevertheless, the simplest way to calculateD0 in Eq.
~8! is to calculate a two-point correlation function for the
Sivashinsky equation. This is a consequence of unexpected
difficulties of the Frankel equation simulation even with the
aid of supercomputers.

The body of this paper is organized as follows. Section II
is devoted to the derivation of the Frankel and the Sivashin-
sky equations and to their main properties, which are neces-
sary to our investigation. Methods of simulations of the
Frankel equation are considered in Sec. III. The main general
results of these simulations are presented in Sec. IV. Some
properties of fractal lines with low fractal dimensions are
considered in Sec. V, using the generalized Koch line as an
example. A relationship between the two-point correlation
function for the Sivashinsky equation and the fractal dimen-
sion of the front governed by the Frankel equation is inves-
tigated in Sec. VI. This relationship helps us to prove Eq.~8!
for these fronts, wheng→0. Results of the Frankel equation
simulations, which are particularly aimed at the fractal di-
mension determination, are presented in Sec. VII. They al-
low us to evaluate the constantD0 in Eq. ~8!. It should be
emphasized that our results of the simulations including the
value ofD0 concern only the two-dimensional case when the
front is in fact a curve. Nevertheless, our main analytic re-
sults including the analytic form of Eq.~8! can be general-
ized also to the three-dimensional case. This is explained in
Sec. VIII. Our general results, their main consequences, and
further problems are discussed in Sec. IX.

II. THE FRANKEL AND SIVASHINSKY EQUATIONS

Suppose that the flame front is sufficiently thin with re-
spect to other scales and its velocity is sufficiently low with
respect to the sound speed, whereas no other forces with the
exception of pressure gradients are applied to matter. Then
the flow both ahead and behind the flame front can be treated
as incompressible, so that the vorticityvW 5 curlvW is governed
by the so-called freezing-in equation

]vW

]t
5 curl~vW 3vW !, ~9!

wherevW is the fluid velocity. If initially there was no mac-
roscopic motion before the flame ignition localized in a small
singly connected region, thenvW 50W ahead of the flame front,
in accordance with Eq.~9!. According to Eq.~9!, the vortic-
ity can be generated only near the front where the density is
not uniform and it is carried away downstream~relative to
the front!. However, if the front preserves its spherical or
planar shape, then the flow is obviously potential~i.e.,
vW 50W ) even behind the front.

To evaluate a role of the vortical componentvW v of the
velocity field in comparison with the nonuniform part of the
potential componentvWNP in the vicinity of the front it is
possible to use the linear theory of the LD instability~see
Ref. @3# for details! which is valid for this purpose in the case
when h!l, whereh is the deviation of the front position

from its unperturbed position andl is a typical wavelength
of the front disturbances. It is necessary to note here that
h/l;g!1 even for the fully developed LD instability when
g→0 ~see Sec. VI below!. Thus we have

uvW vu/uvWNPu;g, ~10!

with uvWNPu being of the order ofgu0h/l. It is seen that the
vortical component of the field velocity can be neglected in
the first approximation under the conditionsg!1 and
l@ l D , wherel D is the thickness of the diffusion zone of the
flame front@24#.

We proceed now to a brief derivation of the Frankel equa-
tion governing the slow flame dynamics for the case where
g!1 and l@ l D . We consider here only the two-
dimensional case, when the front is actually a curve.

The velocity components, tangential with respect to the
front, must be continuous in this approximation@7,18#, hence
the entire velocity field can be assumed to be potential, with
the velocity potential being a harmonic function outside the
front thermal zone due to incompressibility of matter there.
A reference frame can be chosen in such a way that the
velocity of the unburned matter tends to zero at infinity. The
mass conservation law determines the jump of the normal
velocity component across the front, so that the velocity can
be expressed as the gradient of a single layer potential with
surface density determined by the mass flux across the front
~see Ref.@20#!. Assuming the flame front to be a finite closed
curve ignited in a small portion of initially motionless un-
burned matter, we may write the following Frankel-like
equation for the normal velocity of the front propagation~see
Ref. @20#!:

U~xW ,t !5
J~xW ,t !

rb
2

g

2rb
S J~xW ,t !

2
1

p R
S~ t !

J~jW ,t !
~xW2jW !•nW ~xW ,t !

uxW2jW u2
dljD . ~11!

Here S(t) is the moving curve line corresponding to the
flame front;dlj is a differential of its length;nW at fixedt is a
smooth unit vector field that is normal to the front lineS
pointing towards the unburned matter;J(xW ,t) is the mass flux
across the front, which depends in general on the position
xW of a point on the curveS; and the positive sign ofU is
chosen to correspond to the direction ofnW . PointsxW andjW in
Eq. ~11! belong toS(t). This conforms to the fact that
U(xW ) andJ(xW ) are defined forxWPS(t) only. The motion of
S can be described by the motion of points belonging to it,
so that

dxW~ t !

dt
5nW ~xW ,t !U~xW ,t ! for xW~ t !PS~ t !. ~12!

The mass fluxJ0 across a planar front, which is actually a
straight line in this case, is a physical constant for a given
fuel at fixed~by assumption! external pressure. If the front is
curved only slightly, then its curvature can be treated pertur-
batively, assuming that the ratio of the front diffusion thick-
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ness to its typical curvature radius is a necessary small pa-
rameter. As mentioned in the Introduction, the relevant
theory is further elaborated after the pioneering work by
Markstein @16#. See Refs.@17–19,7,3–5,14#. Thus we can
write

J~xW ,t !5J02rbDMK ~xW ,t !, ~13!

whereK (xW ,t) is a curvature of the curveS(t) at the point
xWPS(t), with K being positive when the front is convex
towards the unburned matter;DM is the Markstein diffusion
coefficient @16#. The second term on the right-hand side of
Eq. ~13! is assumed to be much less than the first one.DM is
usually positive when the thermal conduction is a more effi-
cient process than the molecular diffusion of reactants~see
Refs. @17,18#!. We suppose below thatDM.0. Instead of
DM , the Markstein lengthl M5rbDM /J0 is frequently used.
As a rule,l M is a little larger than the typical front thickness
l D . The curvatureK can be expressed in terms of the de-
rivatives ofnW : K5( divnW )uS .

It will be seen from our results that a maximum absolute
value of the curvature of the flame front wrinkled by the LD
instability is of the order ofg3/ l M , so that Eq.~13! is appli-
cable here. Besides that, since the correction toJ(xW ,t),
caused by the front curvature, is of orderg3, this correction
should be taken into account only in the first term on the
right-hand side of Eq.~11!. One should remember that these
terms can be considered as only two first nonzero terms of a
series in powers ofg of an ‘‘exact’’ expression forU. Let us
introduce new units, so that the length is measured inl M , the
time in l M /ub , and density inrb , and let us refer to this
system as Markstein units. In these unitsJ05DM51 and the
reduced dimensionless form of Eq.~11! can be written as

U~xW ,t !512 divnW ~xW ,t !

2
g

2 S 12
1

p R
S~ t !

~xW2jW !•nW ~xW ,t !

uxW2jW u2
dljD . ~14!

This is the Frankel equation@20# with the account of the
Markstein stabilization of the LD instability at short wave-
lengths. It contains single dimensionless parameterg, which
should be considered asg→0. Only this dimensionless form
of the equation will be used below.

Let us suppose now that in some Cartesian system of
coordinates (x,y) the frontS can be defined by the equation

y5t1h~x,t !, ~15!

with

u]h/]xu!1 ~16!

and with the regiony.t1h(x,t) corresponding to the un-
burned matter. Then, in a reference frame where the burned
matter aty→2` is motionless, the evolution of this surface
obeying Eq.~14! can be described, in accordance with Ref.
@20#, by the equation

]h

]t
1
1

2 S ]h

]xD
2

5gI $h%1
]2h

]x2
. ~17!

Here

I $h%~x!5
1

4pE ukuh~z!expik~x2z!dkdz. ~18!

Equation ~17! was formulated by Sivashinsky in Ref.@21#.
A more general equation is suggested in Ref.@25#.

The dimensionless parameterg can be eliminated from
Eq. ~17! if we introduce a scaled function

h~x,t !5h~x/g,t/g2! ~19!

instead ofh(x,t) ~cf. @26#!. Thus the functionh obeys the
following form of the Sivashinsky equation:

]h

]t
1
1

2 S ]h

]x D 25I $h%1
]2h

]x2
. ~20!

This means that the Sivashinsky equation~20!, as well as
~17!, does not actually contain any dimensionless parameters
in contrast to the Frankel equation~14!. Equation ~20! is
invariant with respect to the mapping

h~x,t !→h̄~x,t !5cx2
1

2
c2t1h~x2ct,t !1h0 ~21!

for any constantc andh0 . This property shows, in particu-
lar, that there is only a trivial interaction between two distur-
bances if the ratio of their wavelengths is much greater than
unity. The Sivashinsky equation~20! has another important
property for solutions with extremely large spatial scales
when the last term on the right-hand side of Eq.~20! is
negligible. Then the equation

]h

]t
1
1

2 S ]h

]x D 25I $h% ~22!

preserves its form under the action of the scaling

h~x,t !→h̄~x,t !5mh~x/m,t/m! ~23!

for eachm.0.
The Frankel equation~14! has a symmetry corresponding

to a rotation of the coordinate system by an arbitrary finite
angle around its origin and to any displacement of the latter.
But the Sivashinsky equation is not rotationally invariant
with respect to the rotation of the coordinate system in the
ambient space because the condition~16! had been used for
its derivation. This condition is not rotationally invariant.
Nevertheless, the invariance~21! of the Sivashinsky equation
can be considered as a consequence of the rotational symme-
try of the Frankel equation.

It is widely admitted that the Sivashinsky equation plays a
significant role in many branches of nonlinear physics. For
this reason it was investigated in a number of works@26–30#.
The elegant analytic method developed in Ref.@29# gives a
wide set of exact solutions of Eq.~20!; some properties of
these solutions will be used below.

The Frankel equation was derived rigorously. That is why
we presented above the main steps of its derivation. This
cannot be said about the Sivashinsky equation~20!. Indeed,
the necessary condition~16! for its applicability is easily
violated if the ratiolmax/lmin is sufficiently large even for
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small g. Nevertheless, this equation is extremely useful for
investigations of the Frankel equation properties, as will be
seen in Sec. VI below.

III. NUMERICAL TECHNIQUE FOR FLAME
SIMULATION WITH THE FRANKEL EQUATION

For numerical experiments with an initial value problem
for the two-dimensional Frankel equation~14! we have used
the following discretization. Each piece of the front is repre-
sented by a mesh point with coordinates (xi ,yi), so that the
set of the points$xi ,yi% with i50,1,2, . . . ,N,N11 and
(xi ,yi)[(xi1N ,yi1N) for i50,1 forms an approximation of
a closed curve modeling the front. The step of the mesh
along the front is defined as

si5@~xi2xi21!
21~yi2yi21!

2#1/2. ~24!

An important quantity is then defined

D l i5~si1si11!/2. ~25!

The quantityD l i may be called the mesh point weight since
it reflects the contribution of the point to the velocity poten-
tial. The total number of pointsN is variable: it is not al-
lowed to decrease, but it may grow to adapt the peculiarities
of the front. The weightD l i is kept to be bounded in the
range lmin,Dli,lmax for each i51,2, . . . ,N. When the
neighboring mesh points are too close, one of them~with the
minimum weight! is deleted, butN is kept fixed, so an addi-
tional mesh point appears in the middle of the interval with
maximum stepsi . When the neighboring points are too dis-
tant, a mesh point is inserted between them, soN is in-
creased. After numerical experiments the values of
lmin50.2 andlmax510 in the Markstein units were chosen.

For each pointi we use its neighborsi21 and i11 to
build a circumference going through these three points. The
radius of the circumferenceRi gives the curvature of the
front at the pointi , so that divnW i51/Ri with the second-order
accuracy relative toD l i . The direction to the center of the
circumference gives, to the same accuracy, the direction of
the local normalnW i .

Now we have for each point a set ofN ordinary differen-
tial equations~12!, whereU is taken from the discrete ver-
sion of the Frankel equation~14!. There are two nontrivial
moments in this equation: the diffusion term divnW i and the
integral over the whole length of the front, which must be
computed anew for each point. In an explicit scheme the
time step is bounded by the Courant condition, i.e., it must
be ofO„min(Dli)

2
…. Sometimes this may be too restrictive, so

we have developed an implicit numerical code employing a
predictor-corrector integrator for obtaining the solutions to
Eqs. ~12! and ~14!. It would be too hard to invert the huge
Jacobian needed for Newton’s iterations, so to find the solu-
tion of the equation for the corrector simple iterations were
used~the method of a fixed point!. The convergence of this
algorithm also imposes a restriction on the time step, but not
as stiff as the Courant condition. Another advantage of a
predictor-corrector scheme is the natural way to control the
error by comparing the predicted and corrected values of
(xi ,yi). The scheme is based on the widely tested Gear al-

gorithm @31# with options for implicit Adams and Brayton-
Gustavson-Hachtel@32# schemes with an automatic choice of
the time step and of the order of the method.

The integral in Eq.~14! is approximated by the formula of

rectangles@jW is identified with a point (xj ,yj ) anddlj is just
replaced byD l j and for eachi the sum overj51,2, . . . ,N is
taken with a special treatment of the casej5 i #. This algo-
rithm costsO(N2) operations, which is too much whenN is
of the order of a few thousand. To reduce the cost, it is
natural to apply here algorithms employing a hierarchical
tree construction for calculatingN-body interactions. In our
code the integral is computed by the Barnes-Hut method@33#
with a vectorizable algorithm analogous to that developed by
Hernquist@34# and Makino@35#. This method allows us to
perform tree construction and potential evaluation in
O(NlnN) operations. In our implementation of the method
the mass of particles is replaced simply by the weightsD l i of
the mesh points. Thus the calculation of the velocity poten-
tial is quite similar to force calculations in Refs.@33–35#.
The main difference with the cited works is the treatment of
the motion of the mesh points or ‘‘particles’’: it is necessary
to take into account that in our set they are not completely
free—the ordering ofN points along the front must be pre-
served at any time step.

The accuracy of potential calculations was tested by com-
paring the results with analytical formulas for the potential of
a circumference segment with constant linear density. The
stability of the algorithm was tested by computing the evo-
lution of a quasicircular front with a small initial radius for
low values of the density jumpg. For such initial conditions
all low-amplitude perturbations actually die out in our nu-
merical simulations as long as the mean radius of the front
remains smaller than the critical radius for giveng ; cf. Ref.
@3#.

It is necessary to notice that the front curves governed by
Eq. ~14! can become self-intersecting. However, a real flame
front cannot be self-intersecting. Hence Eq.~14! should be
completed by the so-called reconnection rule. The process of
reconnection, expected from a physical point of view, is de-
scribed by Fig. 1.

In actual simulations we avoided complications with the
appearance of the multiply connected structure of flames
merely removing the mesh points, which tend to produce an
intersection of the front. Thus the ‘‘lake’’ of unburned mat-
ter, shown on the right-hand side of Fig. 1, remains con-
nected by a narrow ‘‘channel’’ with the ‘‘ocean’’ of the fuel
and the lake quickly disappears. This is some violation of the
physical picture, but we find that the intersection of distant
parts of the front is encountered only for large values ofg,
when the validity of the potential approximation does not
hold and the Frankel equation does not describe physical
flames~see illustrations and discussion in the following sec-
tions!. Nevertheless, the precautions against the front inter-
sections are implemented in the code: the nontrivial monitor-
ing of the mesh points, which are not neighbors along the
front but which approach each other to a dangerous proxim-
ity, is done with the aid of vectorizable procedures similar to
those described in@34# for the nearest-neighbor searching
with the aid of the tree structure built for the potential cal-
culation.
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As is well known, the LD instability leads to the forma-
tion of cusps directed to the burned matter@3,21#. In our
simulations of the Frankel equation the cusps are smoothed
by the Markstein diffusion and by our prescription to remove
the points with a low value ofD l . Yet it is not a rare event
even for smallg that the neighboring mesh points moving
near a cusp tend to produce an intersection of the front. We
forbid this by imposing a restriction on the minimum angle
at the vertex of a cusp: each mesh point at a vertex having an
angle less than the allowed minimum is removed from the
mesh. The value of 0.03 rad was chosen for the minimum
allowed angle.

IV. PRELIMINARY RESULTS OF THE SIMULATION

In this section we present the results of simulations of the
Frankel equation concerning the general properties of this
equation. We are interested in the properties of the Frankel
equation itself, regardless of the fact that it models flame
propagation only atg→0.

The global features of the front and their temporal evolu-
tion for two values ofg50.8,0.4 as obtained by the Frankel

equation simulations described above are presented in Figs. 2
and 3. The initial front shape is a circle with a regular small-
amplitude sinusoidal perturbation along thex coordinate.
The initial conditions are quickly forgotten in the case of
g50.8, but they persist for a longer time wheng50.4. The
front consists of arcs, which are convex towards the un-
burned matter with sharp cusps near their connections, which
are directed towards the burned matter. This agrees with the
well known properties of the Sivashinsky equation@21#,
which are manifested by even its analytic solutions@29#.

It can be seen that the front pattern forg50.4 differs
drastically from that forg50.8. The front is strongly corru-
gated forg50.8, but only weakly wrinkled wheng50.4.
The pattern structure forg50.4 is hardly distinguishable.
This difference cannot be explained by assuming that the
instability has not yet developed for lowerg. In fact, fully
developed LD instability in the strongly nonlinear regime
takes place at final times for both cases and for all really
unstable wavelengths. The growth rate of the instability de-
pends ong ~see Ref.@2#!. For smallg it is just proportional
to g. This is reflected particularly in Eq.~17!, which repro-

FIG. 1. Process of the front reconnection when the self-intersection can take place. The front patterns for two moments of time are
represented. For easier viewing they are separated from each other. The front propagates upward, where the unburned matter is placed.

FIG. 2. ~a! Front pattern forg50.8 at different timest5158,309,377,467,586,604. Length and time are measured in Markstein units. The
window ~b! is a blowup of a portion of the window~a!.
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duces the Landau-Darrieus growth rate for smallg. How-
ever, a slower development of the instability forg50.4 is
compensated for by a longer time of simulation.

More attentive examination of these pictures reveals that
there are two quantitative reasons responsible for the strong
difference between the two patterns. First, the unstable wave-
lengths range forg50.4 is sufficiently narrower than for the
g50.8 case. Indeed, the longest unstable wavelength is pro-
portional tog for a circular flame, whereas the shortest one
is inversely proportional tog. It is a direct consequence of
the linear theory~see, for example, Ref.@3#! and is not so
interesting from the viewpoint of the nonlinear theory.

Second, the relative degree of nonlinear saturation, i.e.,
the ratioh/l, for theg50.4 case is significantly lower than
for the g50.8 case. Hereh is a deviation of the front posi-
tion from the nearest reference circle andl is a typical wave-
length of disturbances. This fact is more evident in Fig. 3~b!,
where a portion of the front is represented with a more ap-
propriate scale factor. It is almost evident that this leads to a
smaller fractal dimension of the front for the smallerg. This
issue will be discussed in some detail in the following sec-
tions, but it is worth noticing now that the front fractal di-
mensionD seems to fall drastically wheng decreases down
to 0.4 or, generally speaking,D seems to depend strongly on
g, decreasing together withg. If this is so, then it leads to a
more important influence on the renormalized flame speed
~3! when the ratiolmax/lmin is sufficiently high than chang-
ing of this ratio itself.

There are some other conclusions that can be drawn from
the analysis of the results presented in Figs. 2 and 3. The
longest unstable wavelength is satisfactorily described by the
linear theory for a circular front@3#. This theory takes into
account stretching of disturbances along the front due to its
radial expansion. The shortest wavelength, really unstable
for finite amplitudes, is determined by a similar effect, but
stretching is caused now by disturbances with longer wave-
lengths, so it is actually some nonlinear effect that was con-
sidered in Refs.@3,21,4#. Our simulations show that the
shortest really unstable wavelength, which is actuallylmin ,

can be approximated as (30240)/g.
Self-intersections of the front are another phenomenon

that can be easily detected in Fig. 2 but is absolutely not seen
in Fig. 3. We have never observed self-intersections of dis-
tant parts of the front forg less than 0.5.

V. SOME PROPERTIES OF CURVES WITH LOW DD:
EXAMPLES

As shown both by preliminary results of the Frankel equa-
tion simulation and by a special investigation presented be-
low, the fractal excessDD5D21 of the flame ‘‘surface,’’
which is actually a curve for two-dimensional ambient space,
is very small for smallg. But fractal lines with a small
fractal excess have some important peculiarities. To illustrate
them, we consider here the generalized example of a curve
introduced first by von Koch in 1906~see, e.g., Sec. 13.2 in
@36#!. This example seems to mirror some basic properties of
the results of simulations quoted above. An analogy between
Koch triads and the shapes of expanding flames in laboratory
experiments was noted in@11#.

The generalized Koch curveKu is determined as a limit of
a sequence$Ku,n% (n51,2 . . . ) ofcurvesKu,n . Each mem-
berKu,n of this sequence is a broken line, consisting of seg-
ments of the same length, and this broken line is constructed
from the previous member of the sequenceKu,n21 by an
iterative procedure. Each step of the iteration replaces each
line segment, i.e., each link of the broken lineKu,n21 , by the
scaled ‘‘basic’’ broken line, which is similar to that depicted
in Fig. 4. The geometrical characteristics of this basic broken
line are defined in Fig. 4~b!. The first member of the se-
quence is a line segment of unit length. It is useful to intro-
duce two other geometrical parameters of the basic broken
line, namely,~a! the ratio of the length of the segments to the
diameter of the basic line

f5
1

2~11A12u2!
~26!

FIG. 3. Front pattern forg50.4 in two different scales for the moments of timet5197,394,592,785,966.
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and~b! the ratio of the total length of the basic broken line to
its diameter

F54 f . ~27!

The definition ofu is clearer from Fig. 4~b!. Let us recall that
the original Koch curve, Fig. 4~a!, corresponds tou5A3/2.
The memberKu,n of the sequence$Ku,n%, i.e., the member
that is the result of (n21)-fold applications of the iteration,
is the broken line with 4n21 segments, the length of each
segments(n) being equal to

s~n!5 f n21, ~28!

whereas the total length ofKu,n is

S~n!5Fn21. ~29!

Owing to its construction, the curveKu is self-similar, so
it is a fractal curve whose fractal dimension is equal to

DKu
5 lim

n→`

@11 log1/s~n!S~n!#511 log1/s~n!S~n!511 log1/fF

5
ln~F/ f !

ln~1/f !
5

2ln2

ln21 ln~11A12u2!
. ~30!

ThusDKu
obeys the asymptotic relations

DKu
→5 22

2

ln2
A12u2 for u→1

11
1

8ln2
u2 for u→0.

~31!

The fractal excessDDKu
[DKu

21→u2/(8ln2) whenu→0.

If a point A is a vertex of a broken lineKu,n , thenA
PKu . Let us consider two pointsA and B PKu that are
extreme points of the same segment of a broken lineKu,n for

somen. Any lineKu,n may be treated as a smoothed version
of the curveKu over spatial scales that are rigorously smaller
than s(n). Now let us takem>1 and denotelmin[s(n1m)
for a curveKu,n1m . Let Slmin(AB) be a distance betweenA

andB along the curveKu,n1m . The shortest ‘‘wavelength’’
of ‘‘disturbances’’ corresponding to the curveKu,n1m is
lmin5f n1m21. If we definelmax[uABu5f n21 to be the order of
the longest wavelength of disturbances that can be placed
betweenA andB, then we have

Slmin~AB!5uABuS lmaxlmin
D DKu

21

, ~32!

with DKu
being the same as in Eq.~30!. By the way, one can

give another derivation of Eq.~32! immediately if one keeps
in mind the definition, generalizing Eq.~1! for an interval of
a one-dimensional curve.

According to Eq.~31!, DDKu
→0 whenu→0. Hence, if

1!
lmax
lmin

!exp
1

DDKu

for DDKu
→0, then

Slmin~AB!5uABuS 11DD ln
lmax
lmin

1••• D ~33!

and the relative correction ofSlmin(AB) with respect touABu
is small.

Let us consider again some pointA belonging to the curve
Ku and a circle centered at the pointA with radiusr , so that
the circle intersects the curveKu at least at two points situ-
ated on opposite sides of the curveKu relative toA. Choose
the pointsB andC nearest toA alongKu and belonging to
the opposite intersections mentioned above. It is interesting
that owing to the construction ofKu, the angle between
vectorsABW andCAW is small for smallu and of orderu. This

FIG. 4. ~a! Three initial steps of the Koch example.~b! The broken lineABCDE, which replaces the upper broken line in~a! in the
construction of a generalized Koch curve.uABu5uBCu5uCDu5uDEu[ l . h[uCFu, u5h/ l , and f[ l /uAEu are the parameters used in the
text.
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important fact does not depend on the value ofr and is true
even for arbitrarily smallr . It does not contradict, however,
the statement that in any, even a very small, vicinityO« of
each pointAPKu , we can find a pointBPO«ùKu such that
the vectorABW has an arbitrary direction.

These properties of the generalized Koch fractal curve can
be expressed, whenu→0 and DD→0, by the following
statements.

~a! The curveKu is very ‘‘smooth’’ on average in arbi-
trarily small scales, whereas it is not differentiable and not
smooth locally.

~b! The distance along the smoothed curveKu between
two pointsA and B belonging to the curveKu , which is
smoothed over the scales less thanlmin , differs only slightly
from the shortest distanceuABu between these points while

lmin@uABuexp~21/DD !, ~34!

which is extremely small with respect touABu when
DD→0; see Eq.~33!.

~c! The curveKu smoothed over the scales that are less
than lmin can be described by the equation

y5h~x! with udh/dxu!1 ~35!

in the proper Cartesian coordinates provided thatlmin obeys
the inequality~34!.

We believe that the properties~a!–~c! are general proper-
ties of any ‘‘normal’’ fractal curve with smallDD.

VI. ANALYTIC ESTIMATION OF THE FRACTAL EXCESS
WITH THE AID OF THE SIVASHINSKY EQUATION

Comparing property~c! of the generalized Koch fractal
curve with Eqs.~15!–~17!, one sees that the Sivashinsky
equation~17!, as well as Eq.~20!, may be a very useful
model for the Frankel equation~15!. For this reason it is
interesting to consider properties of stochastic solutions of
the Sivashinsky equation in some detail.

Consider a stochastic solution of Eq.~20! for arbitrarily
large t→`, if a very low noise is supposed as the initial
condition att50. Due to the intrinsic instability of Eq.~20!,
the strongly nonlinear regime of this instability should take
place at the momentt in the following range of spatial scales
l

1! l!t, ~36!

whereas forl@t the growth rate is too low for this instability
to develop appreciably and forl!1 strong damping of dis-
turbances takes place due to the Markstein diffusion. The
two-point correlation function of the Sivashinsky equation
and its Fourier transform may be defined as

^h~x,t !h~x8,t !&5G~x2x8,t !, ~37!

hk
2~ t ![Ḡ~k,t !5

1

2pE G~x,t !e2 ikxdx, ~38!

where ^ & denotes a certain spatial averaging. The scaling
~23! of Eq. ~22! or solutions of Eq.~20! in the range~36!

should lead to the invariance of the two-point correlation
function in the relevant range of the wave vectors with re-
spect to this scaling. Then

hk
2~ t !5

d0~2!

2

1

uku3
1••• for

C1

t
!uku!C2 . ~39!

Here d0(2), C1 , andC2 are some unknown positive con-
stants, as well asCi ~for i53,4, . . . ) entering the expres-
sions below. They should be of the order of unity since Eq.
~20! does not contain any large or small coefficients. The
number 2 ind0(2) refers to the dimension of the ambient
space in which the flame front propagates.

This important result can be obtained in a more physical
manner~see Ref.@8#!, which clarifies basic assumptions for
Eq. ~39! validity. Let h̄(k,t) be the Fourier transform of
h(x,t) and

h̃k~x,t !5E
k

2k

h̄~k,t !exp~ ikx!dk ~40!

be typical disturbances with the wavelengths of the order of
2p/k for 1/t!k!1. Then it is quite natural that for
h˜k(x,t) all terms in Eq.~22! are on average equal to each
other by the order of magnitude when 1/t!k!1. This natu-
ral assumption leads to Eq.~39!. Notice that the right-hand
side of Eq.~22! describes the linear instability, whereas the
term (¹h)2/2 corresponds, in distinction to all others, to a
nonlinear attenuation. If the considered property is expressed
in terms ofh̃ instead ofh̃, with h̃ being defined analogously
to h̃ in Eq. ~40!, then it gives a relation

u]h̃k /]xu;g ~41!

for any k belonging to the range 1/gt!k!g.
The latter consideration implies that an interaction of dis-

turbances with a high value of their typical spatial scale ra-
tios, which can be both direct and by means of a cascade,
plays a minor role in the formation of the level of quasista-
tionary fluctuations relative to interactions of modes with
comparable wavelengths and to competition of the latter
nonlinear process with the linear growth rate. Indeed, Eq.
~21! shows only a trivial action of a longer wave on a con-
sidered one, whereas a shorter wave leads mainly to the front
velocity renormalization, which is proportional to
^(¹h)2&/2 with averaging over the shorter wavelengths. Ad-
ditional arguments illustrating the role of coherent cascade
processes can be obtained by the analysis of exact ‘‘lami-
nar’’ stationary solutions of Eq.~22! @29#, which should be
regularized by the term«¹2h ~with «→0). The existence of
the cusps in these exact nonlinear solutions leads to a de-
crease of the noise spectral density at highk, which is
steeper than suggested by Eq.~39!. The contribution of cusps
to the noise spectral density is proportional to (kl)24ln2(kl)
for kl@1, where l is the distance between the cusps. The
consideration of the Sivashinsky equation presented above
suggests that the fluctuation level near a fixed wavelength is
determined mainly by linear and nonlinear interactions with
fluctuations whose wavelengths are of the order of a fixed
one, but not by direct or indirect interactions with fluctua-
tions whose wavelengths are much longer or shorter~of
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course, the real dissipation of the fluctuation energy takes
place in the region ofk*1 only!. Thus the Sivashinsky
equation ~20! differs qualitatively from the Kuramoto-
Sivashinsky equation@37#, for example, where the interac-
tion of modes of very different spatial scales is very impor-
tant.

Using the two-point correlation function~39!, one can
find other important properties of the stochastic solutions of
the Sivashinsky equation:

^@h~x!2h~x8!#2&'d0~2!~x2x8!2ln
C3t

ux2x8u

for C4t@ux2x8u@C5 , ~42!

^~]xh!2&'2d0~2!lnC6t for t@C7 , ~43!

where]x[(]/]x). The integrals, needed to obtain Eqs.~42!
and ~43! from the Fourier transform of the two-point corre-
lation function, diverge at upper and lower limits but only
logarithmically, as soon as the asymptotic form~39! of the
two-point correlation function is substituted. This allows us
to evaluate them successfully with relative accuracy of the
order of 1/lnt. The relationship~43! can be rewritten in the
form

^~]xh!2&'2d0~2!ln~ lmax/ lmin! ~44!

with the same accuracy if the typical maximum and mini-
mum wavelengths of disturbances are denoted bylmax and
lmin , respectively, withlmax;t and lmin;1.

Turning now to the unscaled form~17! of the Sivashinsky
equation and taking into account the proper rescaling, we
notice that the value of̂(]xh)

2&/2 gives the following cor-
rection to the mean front velocity:

du[u2u05^~]xh!2&u0/25u0d0~2!g2ln~ lmax/ lmin!,
~45!

whereu0[1 in our units, whereas the correction to the front
‘‘length’’ between pointsx andx8 is

S~x,x8!2ux2x8u'ux2x8u^~]xh!2&/2

'ux2x8ud0~2!g2ln~ lmax/ lmin!. ~46!

It appears from the viewpoint of the definition~3! that the
fractal excess corresponding to the Sivashinsky equation is
exactly equal to zero. This statement contradicts the opinion
expressed in Ref.@23#, where the value ofDD50.3 is
claimed. But more attentive examination of the last para-
graph of Sec. 4 in Ref.@23# and of the accompanying Table
1 therein reveals that, for small scales, lnl<7.6 in our nota-
tion, where the fractal excessmustbe determined, the value
of DD50.01 is actually found numerically in@23#. Given
numerical noise, this does not contradict our resultDD50
implied by Eq.~46!.

Comparing now Eq.~46! with Eq. ~33!, the following
important statement can be formulated. The fractal excess of
the flame front surface~which is actually a curve here! gov-
erned by the Frankel equation can be expressed in terms of
the coefficientd0(2) in the asymptotic two-point correlation
function; see Eq.~39!:

DD5d0~2!g2 for g→0. ~47!

This almost obvious statement, if we keep in mind Eqs.~33!,
~35!, ~15!–~17!, and~46!, is, however, in need of additional
arguments.

Let us consider a curveS(t) governed by the Frankel
equation~14! for time t→` in the case wheng→0, but

lmax

lmin
;g2t@exp

1

DD~g!
. ~48!

Let us also divide the whole range of typical wavelengths of
the front bends (lmin ,lmax) in N subranges (l i21 ,l i) with
i51,2, . . . ,N , so thatl 05lmin , l N5lmax, and

1!
l i
l i21

5Q!minH exp 1

d0~2!g2 ,exp
1

DD~g! J , ~49!

with Q independent of the numberi . For example,
Q;min$exp@1/gAd0(2)#, exp@1/ADD(g)#% and N being
equal to the integer part of ln(lmax/lmin)
max$gAd0(2),ADD(g)% can be admitted as a suitable ex-
ample. For each interval (l i21 ,l i), consider a curveS i ,
which is the result of a smoothing of the curveS over scales
which are less thanl i21 . If Q is sufficiently high, then the
influence of shorter wavelengths can be taken into account
by introducing a new renormalized seed velocityui21 of the
curveS i , which is laminar from the viewpoint of the longer
wavelengths. Let us also divide the curveS i in curved inter-
vals of the lengthl i . Each of these intervals ofS i can be
described with high accuracy by the Sivashinsky equation
~17! ~where the last term in the right-hand side may be kept
only as a regularizing factor! in the proper Cartesian coordi-
nate systems, with Eqs.~15! and ~16! being valid automati-
cally owing to our choice of the set$ l i% i51, . . . ,N ; see the
second argument of min(,) in relation~49!. For these coordi-
nate systems, the angle of rotation with respect to each other
may be arbitrarily large if the distance between relevant in-
tervals is sufficiently large. So the reason why the Sivashin-
sky equation is not an exact model of the Frankel equation
lies in their different properties with respect to rotational
symmetry of the problem. Thus

hk
2'

d0~2!

2
g2

1

uku3
for

2p

l i
!k!

2p

l i21
, ~50!

in accordance with Eq.~39!, and the renormalized laminar
front velocity ui for S i11 can be expressed through the
renormalized laminar front velocityui21 of S i , taking into
account the front bends with typical curvature radius being
betweenl i21 and l i in the manner

ui115ui S 11d0~2!g2ln
l i
l i11

D5ui@11d0~2!g2lnQ#.

~51!

This equation is a perfect analogy of Eq.~45!. Collecting
iteratively all corrections to velocities of the frontsS i , we
obtain for the front velocity

4836 53SERGEI IV. BLINNIKOV AND PAVEL V. SASOROV



u[uN5
uN
uN21

uN21

uN22
•••

u1
u0
u05u0@11d0~2!g2lnQ#N

5u0exp@d0~2!g2NlnQ#5u0~Q
N!d0~2!g25u0S lmax

lmin
D DD

,

~52!

whereDD is determined by Eq.~47! and the fourth equality
is valid becaused0(2)g

2lnQ!1 owing to our construction.
This consideration does not take into account exactly the
scales that are comparable tol i , i51,2, . . . ,N. However,
even ln(li11 /li) is very high for g→0, so this inaccuracy
leads to an error in our expression forDD only of the order
of g3 for g→0.

We have completed now the derivation of the relationship
between the fractal excess of the Frankel equation solutions
and the properties of the two-point correlation function of the
corresponding Sivashinsky equation. It may be noted here
that the property~41! of the stochastic solutions of the
Frankel equation corresponds obviously to the construction
of the generalized Koch curve in Sec. V, so thatu can be
compared withg by the order of magnitude, whenu and
g→0. From this point of view, a certain analogy between
Eqs.~31! and~47! is no wonder. The proposal of Eq.~8! was
used in Ref.@8# and that is why we consider the generalized
Koch construction in some detail. This illustration is needed
to show the development of large angles between normals to
the perturbed and unperturbed fronts even for a very small
g. There are two properties of the generalized Koch curve
~with a small height of its basic element! that make it impor-
tant for the flame problem:~i! its basic element is similar to
a saturated LD wave near the minimum nonlinearly unstable
wavelength and~ii ! the ratio of the amplitude of the saturated
‘‘plane’’ LD wave to its length is the same on all larger
scales, similar to the Koch curve. This analogy helps us to
understand that there is no paradox in applying nonfractal
Sivashinsky equation to fractal flames. As discussed in this
section, we apply the Sivashinsky equation only to a
smoothed flame with renormalized speed and in a proper
Cartesian system where there are no large angles and no
fractal behavior because of the smoothing.

The main results of this section can be summarized as
follows.

~i! The fractal excess of the flame front governed by the
Frankel equation is proportional tog2; see Eq.~8!.

~ii ! The coefficient in Eq.~8! can be expressed in terms of
the asymptotic form of the two-point correlation function of
the Sivashinsky equation

D05d0~2!, ~53!

though the fractal excess for the Sivashinsky equation itself
is equal to zero.

VII. FURTHER SIMULATIONS AND ESTIMATION OF D0

We have no opportunities to findd0(2) in Eq. ~39! ana-
lytically, in order to determineD0 with the help of Eq.~53!.
Moreover, some considerations in Secs. II and VI cannot be
considered as rigorous proofs from a mathematical point of
view. For these reasons the simulation of the Frankel equa-

tion is highly desirable to check the functional form of Eq.
~8! and to evaluate the constantD0 . To do this for lowg we
need to continue our runs for a much longer time than is
reasonable with the full quasicircular mesh used to produce
Figs. 2 and 3. We have developed a special version of our
code that allows us to follow the evolution of flames up to
times of a few thousand~in Markstein units!.

Our simulations of the Frankel equation forg50.3, 0.35,
and 0.4 with this version of the code are presented here. To
keep the used CPU time of the Cray Y-MP supercomputer in
the limits of a few hours even forg50.3 under the condition
that the front develops for a sufficiently long time in a satu-
rated nonlinear regime of the LD instability, we simulate
only a part of a whole ‘‘circle’’ of the front, continuing the
solution periodically onto the whole circle. It is justified be-
cause the disturbances with sufficiently low azimuthal wave
numbersm do not grow in accordance with the linear theory
of the LD instability for lowg due to the stretching effect
@3,30#. ~See also Fig. 3.! The sector, where the flame propa-
gation is actually simulated, is 2p/m0 , with m0518,15,13
for g50.3,0.35,0.4, respectively. The initial radiusr 0 is per-
turbed according to the expression

dr /r 050.05g2(
n51

12

22ncos~2nm0w22pr n!, ~54!

wherew is the azimuthal angle,r nP@0,1# is a random num-
ber, andr 0'5002750 forg50.420.3. The front patterns at
different moments of time forg50.35 in these series of our
simulations are shown in Fig. 5 as an example.

The main goal of this simulation series is to determine the
dependence of the fractal excessDD on the expansion de-
greeg. The relevant results are displayed in Fig. 6 and in
Table I. Though the best power fit to these results is
DD50.53g2.6, the square dependence ofDD on g @see Eq.
~47!# and the approximation~8! with

FIG. 5. Part of the whole front ‘‘circle’’ forg50.35 at different
moments of timet labeling the curves. This picture should be imag-
ined to be continued periodically onto the whole circle to obtain the
pattern of the whole front whose center is atx50, y50.
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D05d0~2!'0.3 ~55!

do not contradict them, taking into account possible inaccu-
racies of simulations, whereas the best-squares fit is
DD50.28g2. We think that the accuracy of our estimation
of D0 is not too high and may be estimated as 50%. For this
reason it is worth submitting here our procedure of calcula-
tion of D based on the results of the Frankel equation simu-
lations.

Using the mesh point coordinatesxi ,yi we define

si5@~xi2xi21!
21~yi2yi21!

2#1/2 ~56!

for i52,3, . . . ,N and calculate the total length of the front
sector used in simulations,s(tm)5( i52

N si , for a discrete set
of time moments$tm% covering the whole time interval of
simulation. For the same set$tm% we save the values of the
mean radiusr̄ (tm), defined by the relation

r̄ 25(
i51

N

~xi
21yi

2!/N. ~57!

Then we find the least-squares linear fit to the relation
lns(tm)2lnr̄(tm) and the slope of the fit gives us the value of
D actually used in our results presented in Fig. 6 and in
Table I.

Another way to estimateD is to form ~for a given mo-
ment tp) an array of mean lengths of the front segments
between the mesh points with numbers differing byj :

ds~ j !5
2

N(
i51

N/2

(
k5 i11

i1 j

sk ~58!

for j51,2, . . . ,N/2. One can also form an array of mean
distances of the same pairs of points:

dr~ j !5
2

N(
i51

N/2

@~xi2xi1 j !
21~yi2yi1 j !

2#1/2. ~59!

Now the mean slope of the relation lnds(j)2lndr(j) would
give another estimate of the fractal dimension. This estimate
can be done for only a few moments of timetp when we save
the data for all mesh points, contrary to the estimate based on
the lns(tm)2lnr̄(tm) relation, which is based on averaging
over many thousands of momentstm . Moreover, the proce-
dure described by Eqs.~58! and ~59! tends to underestimate
the value of the fractal excessDD.

It is worth discussing here two important items of the
Frankel equation simulation technique. The first one is a
problem of self-intersections and the second one is the main
source of the uncertainties ofDD calculation.

It can be seen from our results that a typical pattern of the
front curve just before a self-intersection can be sketched by
the left-hand side of Fig. 1. See also a ‘‘real’’ example in
Fig. 2. A self-intersection arises when one or even more
‘‘elementary’’ disturbances having the shape of an arc, being
convex toward the direction of the front propagation, are
near the vertex of a deep cusp. Let us approximate the shape
of the cusps by exact solutions@29# of the Sivashinsky equa-
tion. They are valid for our purpose at sufficient distance
from the cusp, where the front slope relative to the reference
straight line is small with respect to unity. In the region
whose distance from the cusp vertex is at the same time
much less than the typical distancel c between the deepest
cusps, the front shape can be expressed, in accordance with
the exact solutions@29#, as

y5F~x2xc!5gux2xcu ln
l c

2ux2xcu
. ~60!

A typical length of the shortest elementary disturbances,
which is uCDu in Fig. 1, is of the order of 30/g; see Sec. IV.
A self-intersection can really take place only when the slope
of the front to the reference line is at least of the order of

FIG. 6. Fractal excess (DD) dependence on the expansion de-
gree (g) obtained from our simulations of the Frankel equation
~open circles! and different numbered fits~solid lines!. Line 1 cor-
responds to the best power fit (DD50.53g2.6), 2 to the best-squares
fit (DD50.28g2), and 3 to Eq.~8! with D050.3.

TABLE I. Simulated fractal dimensionD of the front surface governed by the Frankel equation~14! as a
function of the expansion degreeg.

g D Best power fita Best-squares fitb Eq.~8!c

0.3 1.022 1.023 1.025 1.027
0.35 1.039 1.036 1.034 1.037
0.4 1.046 1.049 1.045 1.048

a
DD50.53g2.6.
bDD50.28g2.
cWith D050.3.
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unity or even more at the distance ofuCDu;30/g from a
deep cusp. This condition corresponds to the inequality

ln
g2R

60
*
1

g
, ~61!

where l c is replaced by the maximum unstable wavelength
andR is the mean radius of the front. This condition for the
R available, i.e., for the physical time available in our simu-
lations, can be fulfilled only wheng*0.5. This agrees with
the fact of the absence of self-intersections in our simulations
when g,0.5. Almost the same consideration allows us to
estimate the longest perimeterHu of the detached drops of
unburned matter

Hu; l cexp~21/g!. ~62!

Thus the contribution of the lengths of the detached drops
perimeter, which appear due to self-intersections, decreases
proportionally as exp(21/g), i.e., faster than any power of
g, wheng→0. Taking into account our main result~8!, it
can be seen that self-intersections play only a minor role in
the front acceleration wheng!1.

The same peculiarities@see Eq.~60!# of the cusp shape
lead, however, to other difficulties of the Frankel equation
simulations. Only comparatively small regions near the
cusps, whose length is only about 1/10 of the distance be-
tween the cusps of considered depth, are responsible for the
main contribution to the front length correction in the
Sivashinsky approximation. In our simulations~given the
number of mesh points, CPU time, etc.! this distance is com-
parable to the shortest unstable wavelength, for which the
Markstein diffusivity plays a noticeable role in contrast to
long-wavelength disturbances, whenlmax/lmin→`. Then the
accuracy of the self-similarity of the front curve is rather
low. As a result, different methods of the fractal excess cal-
culations, which are equal to each other when
lmax/lmin→`, give somewhat different results. It was easily
detected by us and determines actually the accuracy ofD0
quoted above.

VIII. THE FRONT SURFACE
IN THREE-DIMENSIONAL SPACE

In the foregoing we considered only the two-dimensional
case, when the front corresponds to a curve in two-
dimensional space. Almost all results~with the obvious ex-
ception of the results of simulations! can be generalized on
the three-dimensional case, when the front is represented as a
surface, which is denoted in this section again asS. We
introduce here the main equations in the three-dimensional
case without repeating detailed explanations.

Equation ~11! should be replaced by

U~xW ,t !5
J~xW ,t !

rb
2

g

2rb
S J~xW ,t !

2
1

2pES~ t !
J~jW ,t !

~xW2jW !•nW ~xW ,t !

uxW2jW u3
dSjD , ~63!

wheredSj is a differential of area ofS. Equation~13! keeps

its form with the old definition ofK : K5( divnW )uxWPS , so
K is now the sum of the principal values of the surface
curvature. Equation~14! should be replaced by

U~xW ,t !512 divnW ~xW ,t !

2
g

2 S 12
1

2pES~ t !

~xW2jW !•nW ~xW ,t !

uxW2jW u3
dSjD . ~64!

In the Sivashinsky equations of different forms@Eqs. ~18!,
~20!, and~22!#, the functionsh(x,t), h(x,t), and the opera-
tor ]/]x should be replaced obviously byh(x,y,t),
h(x,y,t), and the nabla operator¹ @in (x,y) space#, respec-
tively, and the factor 1/(4p) in the definition of I $%, Eq.
~18!, should be replaced by 1/(8p2). Thus Eq.~20! has the
following form in the three-dimensional case:

]h

]t
1
1

2
~¹h!25I $h%1¹2h. ~65!

The main results of Sec. VI do not depend seriously on
the space dimension. The Fourier transform of the two-point
correlation functionG(wW )[^h(xW )h(xW1wW )& should have in
the similarity range the asymptotic form

hkW ,t
2

5
d0~3!

2p

1

k4
1••• for

C8

t
!k!C9 , ~66!

whered0(3) is again an unknown positive constant. As a
result, Eqs.~42!, ~43!, and~44! should be replaced by

^@h~xW !2h~xW8!#2&'
1

2
d0~3!~xW2xW8!2ln

C10t

uxW2xW8u

for C11t@uxW2xW8u@C12, ~67!

^~¹h!2&'2d0~3!lnC13t, ~68!

and

^~¹h!2&'2d0~3!ln
lmax
lmin

, ~69!

respectively. Thus, for the fractal dimension of a front gov-
erned by the Frankel equation we can writeDD5d0(3)g

2,
wheng→0.

The Sivashinsky equation~65! governing the front surface
in the three-dimensional space has the following interesting
property quoted in Ref.@30#. If h5 f 1(x,t) andh5 f 2(x,t)
are arbitrary general solutions of Eq.~20!, then

h~x,y,t !5 f 1~x,t !1 f 2~y,t ! ~70!

is a solution~but only a particular one! of Eq. ~65!. Inserting
this particular solution in Eqs.~68! and ~69!, we find that
they keep their validity@because of Eqs.~45! and~46!# after
substituting 2d0(2) instead ofd0(3). Assuming that statisti-
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cal properties of the solution~70! can approximate, to a cer-
tain degree, the properties of a general solution, we can write
d0(3)'2d0(2) with the same degree of accuracy. Hence the
fractal dimension of the front surface governed by Eq.~64!
can be approximated as the double fractal dimension of the
front curve governed by Eq.~14!, wheng→0.

IX. DISCUSSION

The main result of this work is that the flame front
wrinkled by the Landau-Darrieus instability can be approxi-
mated in a certain range of spatial scales by a fractal surface
whose fractal dimension excess tends to zero in accordance
with Eq. ~8!, when the expansion degreeg tends to zero.
More complete general conclusions are quoted in the Intro-
duction and the coefficient of the asymptotic relation~8! is
considered in Sec. VII.

The results of our numerical simulations agree well with
the main qualitative conclusion of@23#: we observe, as they
do, the phenomenon of cell splitting, which is observed also
experimentally for expanding flames@11#. One should re-
member that in Ref.@23# a version of the front equation is
used that is not strictly equivalent to the original Sivashinsky
equation ~17!: Filyandet al. @23# modify the equation in or-
der to include the effects of sphericity of an expanding flame.
We have presented arguments showing that the fractal excess
of wrinkled flames modeled with the Sivashinsky equation
~17! is zero. As we have noted, this does not contradict the
results of@23# for small segments of their simulated flame,
where Eq.~17! is applicable.

An interesting question arises when we compare our re-
sults with those of Joulin@30#. He derived rigorously a modi-
fication of the Sivashinsky equation for spherical flames
~structurally equivalent to that used in@23#! but, contrary to
@23# and to our simulations of the Frankel equation, he found
~using the pole decomposition method as in@29#! that there
was no tendency to repeated cell splitting. The Frankel equa-
tion is not equivalent to the equations used in@23,30#, but
one cannot exclude that the effect of cell splitting found here
and in @23# is produced by numerical noise. Besides ever-
present rounding and truncation errors, the spectral method
used in @23# generates noise whenever the number of the
Fourier harmonics is changed, whereas our technique pro-
duces perturbations when we remove or insert mesh points.
Since perturbations of a very small~‘‘exponentially’’ small!
amplitude are detected and amplified by the Landau instabil-
ity, it is no wonder that new corrugations appear repeatedly
in numerical modeling. A less trivial task is to find out if this
spontaneous tendency is closer to real flames than a much
more laminar behavior predicted by semianalytic solutions
@30#.

Joulin @30# writes about the external noise for real~not
numerical! flames: ‘‘It is difficult to imagine why this noise
should be compatible with large-scale, angular periodicity
corresponding to anO(1), but otherwise arbitrary, sector;
instead a fixed, small-scale, average spatial size is expected,
especially if the noise has a hydrodynamic origin.’’ We can-
not agree that the latter statement is always true: the hydro-
dynamic noise must not be necessarily of the external origin.

One should not forget that the vorticity arises on the
wrinkled front, which is neglected in the Frankel~and

Sivashinsky! approach. As a result, a region of a complicated
vortical turbulent motion may always exist far enough be-
hind the front. A turbulent cascade of vortices can generate
the noise needed, so the flame may well be self-organized
with scales dictated by the LD instability.

There is another consequence of the vortex generation. A
magnitude of the generated vorticity increases in accordance
with Eq. ~10!, when the expansion degreeg grows. So a
region of a complicated vortical turbulent motion extends in
the upstream direction and can absorb the flame front when
g exceeds some critical value. This can be examined with the
aid of results of the two-dimensional numerical simulations
performed by Niemeyer and Hillebrandt~see Ref.@9#!. They
simulated full hydrodynamics of the burning front propaga-
tion as well as processes of burning itself and heat transport
~but using out of necessity a rather small physical size of a
simulated region!. For small g ~when g&0.3), the front
shape obtained in Ref.@9# is quite similar to that obtained
here. However, our investigation corresponds to a signifi-
cantly wider range of spatial scales owing to the use of the
Frankel equation, which allows us to evaluate the fractal
characteristics of the flame.

From the results of Ref.@9# it may be concluded that for
g*0.5 the gas motion in the vicinity of the front becomes
turbulent. If this turbulence acts on the flame front similarly
to the external turbulence, then the fractal dimension of the
flame should be equal to 7/3 in three-dimensional space~see
Ref. @14#!, wheng*0.5. The value 7/3 seems to be in ac-
cordance with the experimental results reviewed in Ref.@11#.

However, it is not clear at present what the primary rea-
son for growing turbulence observed in Ref.@9# for g.0.5
is. It could be just the tendency of front to self-intersection,
which we find exactly forg*0.5. If so, then the vorticity
plays only a secondary role, since it is completely ignored in
our numerical experiments and analytical estimates. The es-
timates presented in Ref.@38# do show that vortical self-
turbulence is rather mild. It would be very interesting to
investigate this question in more detail, relaxing the approxi-
mation of potential flow, which is suspicious forg*0.5.
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