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Landau-Darrieus instability and the fractal dimension of flame fronts
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Nonlinear dynamics of a slow laminar flame front subject to the Landau-Darrieus instability is investigated
by means of numerical simulations of the Frankel equation, when the expansion degtpg— pp)/py IS
small (herep, and p,, are the densities of the unburned and burned “gases,” respegtiv@hty burning in
two-dimensional space is considered in our simulations. The observed acceleration of a front wrinkled by the
instability can be ascribed to the development of a fractal structure along the front surface with typical spatial
scales being between the maximum and the minimum truly unstable wavelengths. It is found that the fractal
excessAD =D —1 decreases rapidly with decreasing)ofto a first approximation a&D = Dy?, whereD is
the fractal dimension of the front. Our rough estimationDgf gives Dy~0.3. The low accuracy of thB,
estimation is caused by certain peculiarities of the Frankel equation that lead to extreme difficulties of its
simulation even with the aid of supercomputers whes0.3—-0.4. It is shown, however, thdd, can be
calculated also from the statistical properties of the Sivashinsky equation, which is easier to simulate, though
the fractal excess for the Sivashinsky equation itself is equalito @ certain sengeThe other important result
of our simulations is that the front self-intersections play an extremely weak role whersmall.[S1063-
651X(96)02605-7

PACS numbe(s): 47.11+j, 47.20—k, 47.53+n, 82.40.Py

I. INTRODUCTION tion. In extreme cases, the LD instability can lead to a tran-
sition from the regime of slow flame propagation to the re-
In large volumes of premixed fuel, the combustion pro-gime of detonation. These features of the LD instability play
cess, or flame, can propagate either in the form of a supemsn important role in many physical phenomena such as usual
sonic detonation wave or in the form of a relatively slow chemical burning of gases in terrestrial conditions, explosive
deflagration wavg1]. In the first case, the unburned fuel is boiling of liquids[6], dynamics of thermally bistable g§g|,
ignited by a shock front propagating slightly ahead of theand thermonuclear burning of the stellar core in the progress
burning zone itself. In the second case, ignition of new fuelof supernova explosions of type [&,9].
portions is governed by heat and active reactant transport, It is necessary to emphasize here that usually there is a
i.e., by thermal conduction and diffusion. In the latter caseyast range of spatial scales unstable with respect to the LD
the flame propagation velocity can be much less than thénstability in the astrophysical objects such as supernova ex-
sound velocity. So the gas pressure is almost uniform anglosions mentioned above. A very rough estimation of the
both burned and unburned gases can be treated as almaatio between the maximum and the minimum scales of front
incompressible fluids outside the flame zone. wrinkles can be given by the ratio of the radius of the con-
The subject of this paper is the slow deflagration regimesidered system to a laminar flame thickness. This ratio can
of the flame propagation. It is well knowi—5] that large  reach 18°— 10" for the case of supernova explosions, which
portions of a slow planar flame front are unstable with re-excludes any possibility of direct numerical simulations of
spect to the large-scale bending. This universal instabilitythe LD instability effects on such conditions and requires an
which is called the Landau-DarrieutD) instability, does analytical approach to describe the propagation of a wrinkled
not depend, for sufficiently long wavelengths, on complexfront.
physical and chemical processes that take place in the burn- A proper heuristic idea for this case is the concept of
ing zone and in the presence of various short-wavelengtfractal surfaces and appropriate fractal dimensions. The idea
instabilities caused by these processes, for example, Ref. of applying fractals to the flame physics was put forth in
[5]). Development of the LD instability depends only on the Refs. [10-12. By a fractal surface we mean an irregular
sign of Ap=p,—p,, Wherep, and p, are densities of the surface whose statistical properties change self-similarly
unburned and burned “gases,” respectively. The LD insta-with a change of the considered scale. A scale range in which
bility of planar flame fronts with respect to large-scale bend-this similarity holds, which will be called the similarity
ing takes place if and only i p>0. We suppose below that range, is assumed to be sufficiently wide in logarithmic
there are no other instabilities of the slowly moving flamescale. Let\ ,;, and \ 5« be, respectively, the minimum and
fronts except for the LD instability. the maximum lengths belonging to this similarity range. The
As explained in the original paper by Landgl], the LD  fractal dimension of the front surface is a numierwhich
instability leads to wrinkling or roughening of the front sur- obeys the inequality D=3, such that the total area of the
face, i.e., to increasing its area with respect to the smootkypical portion of this surface with a diameteris propor-
front, and consequently to acceleration of the front propagational to LP, whenL varies in the range nin<L<\ax.
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If the front structure behaves like a usual smooth surface We recall here some methods used for the description of
with D=2 outside the similarity range, then the area of thethe thin front dynamics. By the way, there are many simi-
front surface, corresponding to the flame front developindarities between the thermally bistable gas dynamics and the
from a small igniting region, can be estimated as slow conductive flame front propagation. The most general

equations neglecting any reactions and diffusion outside a
very thin front were quoted in a pap€r] devoted to the
' @) thermally bistable gas dynamics. The relevant set of equa-
tions is called there a system of “superreduced equations.”
whereR is the radius of a sphere whose volume is equal toThe only consequence of the finite front thickness was the
the volume occupied by the burned gas. Since the mass fluxxistence there of the so-called Markstein diffusividy,
across the flame front depends only weakly on the front curf16], which describes the tendency of a flame to smooth out
vature, when the curvature radius belongs to the similarityhe roughness of its front at small spatial scales. A method
range, the mean velocity of the front relative to the burnedor the calculation of Markstein diffusivity, which is suitable
gas in some cases just for thermally bistable gases, was presented
in Ref.[7]. Other methods that are applicable for investiga-
dR tions of many local properties of the flame fronts and are
u= dt 2) more appropriate for chemical reactions, obeying the Arrhen-
ius law with the high value of the so-called Zeldovich num-
should be renormalized as ber, were published earli€t7,18. The case of the moderate
Zeldovich number is considered in R¢19].
Amax| © 2 If the expansion degreg is sufficiently small so that the
) ' () flow of matter both behind and ahead of the front can be
approximated by the potential velocity field, then the equa-

where Ug is the propagation velocity of the planar laminar tions of matter motion outside the front can be solved in

D-2
A max

S%4WR%

min

U:UO

)\min

front measured relative to the burned gas. general and the whole set of front dynamics equations can be
The features of the front surface should depend on théeduced to a single equatian the front surface. This was
expansion degree done by Frankef20]. The well known Sivashinsky equation
[21,22, which is well known in investigations of wrinkled
Pu—Pb surfaces and moving fronts of different nature, is derived by
y= (4 Frankel[20] from his equation assuming a small slope of the

Pu disturbed front with respect to the reference plane or sphere.

tion to the front properties, theRyin, Amax, andD should ~ Widely used in the present work. -
tend, after sufficiently long temporal evolution of the propa- _ There is some experimental eviderjdd] that the fractal

gating flame, i.e., for sufficiently largg, to dimension of the slow flame front could be equal to 7/3. This
seems to have been confirmed recently by the relevant simu-
Amin=min( ), (5) lations of the Sivashinsky equatid23]. These results, if
they have a wide field of applicability, could lead to drastic
M ma= @mad V)R, (6)  consequences in the theory of supernova explosions: due to
Eq. (3) the slow flame propagation would virtually be impos-
D=D(y). 7) sible forD =7/3, given the enormous similarity range in pre-

supernova white dwarfs. The results of Ré¢fkl,23 as well

If we define),,, as a mean distance between adjacent locafS Of Refs[12,19 have encouraged us to carry out this work
maxima of absolute values of the front principal curvaturesvhere we focus our attention more carefully to flame fronts
multiplied by 2, then Egs(1) and (3) define D(y) and ernkle(_:l by the LD instability under the condition of low
Qmax iN the limit of R— . Determination of i, Amay, and ~ €XPansion degree.
D, whenR—, i.e., of | in(7), @mad?), andD(y), is the Our main results are as follows.
main objective of the theory of moving wrinkled flames. (i) The bending degree of the flame front under the action

It is impossible to do this in one step. So we shall inves-of the fully developed LD instability depends strongly on the
tigate here only a particular case when the expansion degrespansion degreg, as seen from numerical simulations of
v tends to zero. A solution of this problem can help to ap-the Frankel equation.
proximate the flame propagation in some applications of this (ii) Decreasingy leads to very weak wrinkling of the
theory. The most striking example is the supernova exploflame and to a weak role of the front “self-intersections.”
sions of type la mentioned above, which requires evidently (iii) The fractal excess of the wrinkled front surface can
the development of the theory and where typical values obe approximated by the formula
v belong to the range of 0.1-0[42,15, with the major
portion of the flame propagation region corresponding to the AD=Dgyy?, (8)
v range of 0.2—-0.3. Thus the limit af— 0, which will be
considered in this paper, can be a satisfactory zeroth-ordevith its functional form proven analytically and verified nu-
approximation. Definitiong1)—(3) are widely used in the merically. Our numerical simulations givie,~0.3 for the
literature. See, for example, Refd.3,14]. two-dimensional case when the front is actually a curve.
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(iv) The fractal excess of the Sivashinsky equation deterfrom its unperturbed position and is a typical wavelength
mined by using Eq(3) is rigorously equal to O. of the front disturbances. It is necessary to note here that
(v) Nevertheless, the simplest way to calculBtgin Eq.  h/\A~ y<1 even for the fully developed LD instability when

(8) is to calculate a two-point correlation function for the y—0 (see Sec. VI beloyv Thus we have

Sivashinsky equation. This is a consequence of unexpected

difficulties of the Frankel equation simulation even with the lv,l/]vnel~ 7, (10
aid of supercomputers.

The body of this paper is organized as follows. Section 1IWith [vnel being of the order ofyugh/\. It is seen that the
is devoted to the derivation of the Frankel and the SivashinYOrtical component of the field velocity can be neglected in
sky equations and to their main properties, which are necedl’® first approximation under the conditiong<1 and
sary to our investigation. Methods of simulations of theM>1p, wherelp is the thickness of the diffusion zone of the
Frankel equation are considered in Sec. Ill. The main generdlame front[24]. _ o
results of these simulations are presented in Sec. IV. Some We proceed now to a brief derivation of the Frankel equa-
properties of fractal lines with low fractal dimensions aretion governing the slow flame dynamics for the case where
considered in Sec. V, using the generalized Koch line as a¥<1 and A\>Ip. We consider here only the two-
example. A relationship between the two-point correlationdimensional case, when the front is actually a curve.
function for the Sivashinsky equation and the fractal dimen- The velocity components, tangential with respect to the
sion of the front governed by the Frankel equation is inves{Tont, must be continuous in this approximatiah18|, hence
tigated in Sec. VI. This relationship helps us to prove ). the entire velocity field can be assumed to be potential, with
for these fronts, whe— 0. Results of the Frankel equation the velocity potential being a harmonic function outside the
simulations, which are particularly aimed at the fractal gi-front thermal zone due to |ncompre§S|b|I|ty of matter there.
mension determination, are presented in Sec. VII. They alft reference frame can be chosen in such a way that the
low us to evaluate the constabt, in Eq. (8). It should be velocity of the unburned matter tends to zero at infinity. The
emphasized that our results of the simulations including thé"@ss conservation law determines the jump of the normal
value ofD, concern only the two-dimensional case when theV€l0City component across the front, so that the velocity can
front is in fact a curve. Nevertheless, our main analytic re2€ €xpressed as the gradient of a single layer potential with
sults including the analytic form of Eq8) can be general- surface density determined by the mass flux across the front
ized also to the three-dimensional case. This is explained €€ Ref[20). Assuming the flame front to be a finite closed

Sec. VIII. Our general results, their main consequences, angt™ve ignited in a small portion of initially motionless un-
further problems are discussed in Sec. IX. burned matter, we may write the following Frankel-like

equation for the normal velocity of the front propagatisee
Ref. [20]):
Il. THE FRANKEL AND SIVASHINSKY EQUATIONS 20D
Suppose that the flame front is sufficiently thin with re- - Ixy oy -
. S - . Ux,t)y=———=—[ J(x,t)
spect to other scales and its velocity is sufficiently low with Pb 2pp
respect to the sound speed, whereas no other forces with the
exception of pressure gradients are applied to matter. Then 1 . (Xx=&-n(x,t)
the flow both ahead and behind the flame front can be treated - i(t)J(&t) Wdlg . (1Y
as incompressible, so that the vortidEyz curlo is governed
by the so-called freezing-in equation Here 3(t) is the moving curve line corresponding to the

. flame front;dl, is a differential of its lengthn at fixedt is a

Jo > > smooth unit vector field that is normal to the front like

— = curl(v X w), 9 o S

ot pointing towards the unburned matté(x,t) is the mass flux
across the front, which depends in general on the position

wherev is the fluid velocity. If initially there was no mac- x of a point on the curve&; and the positive sign of) is

roscopic motion before the flame ignition localized in a smallchosen to correspond to the directionmfPointsx and £ in

singly connected region, then=0 ahead of the flame front, Eqg. (11) belong to3(t). This conforms to the fact that

in accordance with E9). According to Eq«(9), the vortic- U(x) andJ(x) are defined fopzez(t) only. The motion of

ity can be generated only near the front where the density is can pe described by the motion of points belonging to i,
not uniform and it is carried away downstrednelative 10 ¢q that

the fron). However, if the front preserves its spherical or

Qlangr shape, then the flow is obviously potentiaé., dx(t) - - ) )

w=0) even behind the front. i T =n(x,tH)U(x,t) for x(t) e (t). (12
To evaluate a role of the vortical component of the

velocity field in comQarison with the nonuniform part of the The mass fluxl, across a planar front, which is actually a
potential componenb e in the vicinity of the front it is  straight line in this case, is a physical constant for a given
possible to use the linear theory of the LD instabilisee fuel at fixed(by assumptionexternal pressure. If the front is
Ref.[3] for detailg which is valid for this purpose in the case curved only slightly, then its curvature can be treated pertur-
when h<\, whereh is the deviation of the front position batively, assuming that the ratio of the front diffusion thick-
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ness to its typical curvature radius is a necessary small padere
rameter. As mentioned in the Introduction, the relevant 1
theory is further elaborated after the pioneering work by _ .
Markstein[16]. See Refs[17-19,7,3-5,14 Thus we can I{h}(x)_ﬂj [kIh(exak(x—{dkdZ. (18
write

Equation (17) was formulated by Sivashinsky in RéR1].

J(X,t)=Jg— ppDu-Z(X,1), (13) A more general equation is suggested in R2|.
The dimensionless parametgrcan be eliminated from

where. 7 (x,t) is a curvature of the curv&(t) at the point  Ed. (17) if we introduce a scaled function
ieE(t), with %" being positive_ when the front i; convex n(x,t)=h(x/y,t/ %) (19)
towards the unburned mattdd;, is the Markstein diffusion
coefficient[16]. The second term on the right-hand side ofinstead ofh(x,t) (cf. [26]). Thus the function; obeys the
Eq. (13) is assumed to be much less than the first @g.is  following form of the Sivashinsky equation:
usually positive when the thermal conduction is a more effi-
cient process than the molecular diffusion of reactdate dn 1(dn
Refs.[17,18). We suppose below thdd,,>0. Instead of gt 2\ ax
Dy, the Markstein lengtthy, = pp,Dy /Jg is frequently used.
As arule |, is a little larger than the typical front thickness This means that the Sivashinsky equati@@), as well as

Ip. The curvature’Z can be expressed in terms of the de-(17), does not actually contain any dimensionless parameters
rivatives ofn: T=( divﬁ)|z. in contrast to the Frankel equatiqi4). Equation (20) is

It will be seen from our results that a maximum absoluteiNvariant with respect to the mapping
value of the curvature of the flame front wrinkled by the LD 1
instability is of the order ofy®/l,, so that Eq(13) is appli- 7(x,t)— p(X,t)=cx— §c2t+ n(x—ct,t)+ny (21)
cable here. Besides that, since the correctionJ¢g,t),
caused by the front curvature, is of ordgt, this correction  for any constant and 7,. This property shows, in particu-
should be taken into account only in the first term on thejar, that there is only a trivial interaction between two distur-
right-hand side of Eq(11). One should remember that these pances if the ratio of their wavelengths is much greater than
terms can be considered as only two first nonzero terms of gnjty. The Sivashinsky equatiof20) has another important
series in powers of of an “exact” expression fotJ. Letus  property for solutions with extremely large spatial scales
introduce new units, so that the length is measurdg,inthe  when the last term on the right-hand side of ER0) is
time in Iy /u,, and density inp,, and let us refer to this negligible. Then the equation
system as Markstein units. In these udigs=D,;= 1 and the
reduced dimensionless form of E{.1) can be written as dn 1

+ =
o 2

2_ Pn
—|{7l}+m- (20)

2

Ay (22

ax

U(x,t)=1— divn(x,t)

y 1 (x—&)-n(x,t) -
( 7w Ty |x— &|2 d|§>' (14) (X, 1) = n(X,t) = w (X w,t/ ) (23

preserves its form under the action of the scaling

2

for eachu>0.

The Frankel equatiofil4) has a symmetry corresponding
to a rotation of the coordinate system by an arbitrary finite
angle around its origin and to any displacement of the latter.
But the Sivashinsky equation is not rotationally invariant
ith respect to the rotation of the coordinate system in the
mbient space because the conditid6) had been used for
its derivation. This condition is not rotationally invariant.

This is the Frankel equatiof20] with the account of the
Markstein stabilization of the LD instability at short wave-
lengths. It contains single dimensionless parametexhich
should be considered as—0. Only this dimensionless form
of the equation will be used below.

Let us suppose now that in some Cartesian system g
coordinates X,y) the frontY, can be defined by the equation

y=t+h(x,t), (15) Nevertheless, the invarian¢2l) of the Sivashinsky equation
can be considered as a consequence of the rotational symme-
with try of the Frankel equation.
It is widely admitted that the Sivashinsky equation plays a
|oh/ox|<1 (16 significant role in many branches of nonlinear physics. For

this reason it was investigated in a number of wg2&—30Q.
and with the regiory>t+h(x,t) corresponding to the un- The elegant analytic method developed in R&8] gives a
burned matter. Then, in a reference frame where the burneglide set of exact solutions of E¢20); some properties of
matter aty— — oo is motionless, the evolution of this surface these solutions will be used below.

obeying Eq.(14) can be described, in accordance with Ref.  The Frankel equation was derived rigorously. That is why
[20], by the equation we presented above the main steps of its derivation. This

5 5 cannot be said about the Sivashinsky equatf). Indeed,

oh 1(oh|\* 9°h the necessary conditioflL6) for its applicability is easily

=7+ X2 (A7) violated if the ratio\ y,a/\min IS sufficient!
max! Nmin y large even for

—+
a2

X
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small y. Nevertheless, this equation is extremely useful forgorithm [31] with options for implicit Adams and Brayton-
investigations of the Frankel equation properties, as will beGustavson-Hacht¢B2] schemes with an automatic choice of

seen in Sec. VI below.
Ill. NUMERICAL TECHNIQUE FOR FLAME
SIMULATION WITH THE FRANKEL EQUATION

For numerical experiments with an initial value problem
for the two-dimensional Frankel equati¢i¥) we have used

the time step and of the order of the method.

The integral in Eq(14) is approximated by the formula of
rectanglesﬁé is identified with a pointX; ,y;) anddl, is just
replaced byAl; and for each the sumovej=1,2,... Nis
taken with a special treatment of the cgsei]. This algo-
rithm costsO(N?) operations, which is too much whéhis

the following discretization. Each piece of the front is repre-Of the order of a few thousand. To reduce the cost, it is

sented by a mesh point with coordinates,§;), so that the
set of the points{x;,y;} with i=0,1,2... ,N,N+1 and

natural to apply here algorithms employing a hierarchical
tree construction for calculatiny-body interactions. In our

(%)) =(Xi+n,Yien) fori=0,1 forms an approximation of code the integral is computed by the Barnes-Hut me{B84
a closed curve modeling the front. The step of the meshvith a vectorizable algorithm analogous to that developed by
along the front is defined as Hernquist[34] and Makino[35]. This method allows us to

perform tree construction and potential evaluation in

si=[(xi—Xi—) 2+ (yi—yi—0)?"2 (24 O(NInN) operations. In our implementation of the method
] o ] the mass of particles is replaced simply by the weigHtsof

An important quantity is then defined the mesh points. Thus the calculation of the velocity poten-
Al=(s+5.1)/2. (25 tial is quite similar to force calculations in Ref&33-345.

The main difference with the cited works is the treatment of
the motion of the mesh points or “particles”: it is necessary

it reflects the contribution of the point to the velocity poten- 0 take into account that in our set they are not completely
tial. The total number of point8! is variable: it is not al- reé—the ordering oN points along the front must be pre-
lowed to decrease, but it may grow to adapt the peculiaritie§€"ved at any time step. _
of the front. The weightAl; is kept to be bounded in the 'I_'he accuracy of _potentlal _calculatlons was tested by com-
range | ,in<Al: <l for eachi=1,2,...N. When the Parnng the results with analytical formulas for the potential of
neighboring mesh points are too close, one of titeith the @ circumference segment with constant linear density. The
minimum weighi is deleted, buN is kept fixed, so an addi- Stability of the algorithm was tested by computing the evo-
tional mesh point appears in the middle of the interval withlution of a quasicircular front with a small initial radius for
maximum steps; . When the neighboring points are too dis- low values o_f the densny]ump. For such |r_1|t|al co_ndltlons
tant, a mesh point is inserted between them,Nsds in- all low-amplitude perturbations actually die out in our nu-
creased. After numerical experiments the, values ofnerical simulations as long as the mean radius of the front
| in=0.2 andl,;,=10 in the Markstein units were chosen. remains smaller than the critical radius for givencf. Ref.

For each poini we use its neighbors—1 andi+1 to , )
build a circumference going through these three points. The !t iS necessary to notice that the front curves governed by
radius of the circumferenc®, gives the curvature of the Ed: (14) can become self-intersecting. However, a real flame
front at the poini, so that div;, = 1/R; with the second-order front cannot be self-intersecting. Hence Egi) should be
accuracy reF:ativé ta\l;. The I(:;rectilon to the center of tf]e completed by the so-called reconnection rule. The process of
circumference gives Ito the same accuracy, the direction [econnection, expected from a physical point of view, is de-

- cribed by Fig. 1.
the local normah, . _ . . In actual simulations we avoided complications with the
Now we have for each point a set Nfordinary differen-

appearance of the multiply connected structure of flames
tial equations(12), whereU is taken from the discrete ver- merely removing the mesh points, which tend to produce an
sion of the Frankel equatiofi4). There are two nontrivial  intersection of the front. Thus the “lake” of unburned mat-
moments in this equation: the diffusion term jvand the ter, shown on the right-hand side of Fig. 1, remains con-
integral over the whole length of the front, which must benected by a narrow “channel” with the “ocean” of the fuel
computed anew for each point. In an explicit scheme theand the lake quickly disappears. This is some violation of the
time step is bounded by the Courant condition, i.e., it musphysical picture, but we find that the intersection of distant
be of O(min(Al;)?). Sometimes this may be too restrictive, so parts of the front is encountered only for large valuesyof

we have developed an implicit numerical code employing avhen the validity of the potential approximation does not
predictor-corrector integrator for obtaining the solutions tohold and the Frankel equation does not describe physical
Egs.(12) and(14). It would be too hard to invert the huge flames(see illustrations and discussion in the following sec-
Jacobian needed for Newton’s iterations, so to find the solutions). Nevertheless, the precautions against the front inter-
tion of the equation for the corrector simple iterations weresections are implemented in the code: the nontrivial monitor-
used(the method of a fixed poiptThe convergence of this ing of the mesh points, which are not neighbors along the
algorithm also imposes a restriction on the time step, but nofront but which approach each other to a dangerous proxim-
as stiff as the Courant condition. Another advantage of aty, is done with the aid of vectorizable procedures similar to
predictor-corrector scheme is the natural way to control thehose described if34] for the nearest-neighbor searching
error by comparing the predicted and corrected values ofvith the aid of the tree structure built for the potential cal-
(X;,Y;). The scheme is based on the widely tested Gear akulation.

The quantityAl; may be called the mesh point weight since
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(a) C D {b)

FIG. 1. Process of the front reconnection when the self-intersection can take place. The front patterns for two moments of time are
represented. For easier viewing they are separated from each other. The front propagates upward, where the unburned matter is placed.

As is well known, the LD instability leads to the forma- equation simulations described above are presented in Figs. 2
tion of cusps directed to the burned matt8r21. In our  and 3. The initial front shape is a circle with a regular small-
simulations of the Frankel equation the cusps are smootheginplitude sinusoidal perturbation along thkecoordinate.
by the Markstein diffusion and by our prescription to removeThe initial conditions are quickly forgotten in the case of
the points with a low value oAl. Yet it is not a rare event ,=0.8, but they persist for a longer time wher=0.4. The
even for smally that the neighboring mesh points moving front consists of arcs, which are convex towards the un-
near a cusp tend to produce an intersection of the front. Wgymed matter with sharp cusps near their connections, which
forbid this by imposing a restriction on the minimum angle gre girected towards the burned matter. This agrees with the
at the vertex of a cusp: each mesh point at a vertex having ajje|1 known properties of the Sivashinsky equatif@d],

angle less than the allowed minimum is removed from th%hich are manifested by even its analytic soluti¢28].
mesh. The value of 0.03 rad was chosen for the minimum It can be seen that the front pattern fgr=0.4 differs

allowed angle. drastically from that fory=0.8. The front is strongly corru-
gated fory=0.8, but only weakly wrinkled whery=0.4.
IV. PRELIMINARY RESULTS OF THE SIMULATION The pattern structure foty=0.4 is hardly distinguishable.

In this section we present the results of simulations of thelhis difference cannot be explained by assuming that the
Frankel equation concerning the general properties of thigistability has not yet developed for lower In fact, fully
equation. We are interested in the properties of the Frankaleveloped LD instability in the strongly nonlinear regime
equation itself, regardless of the fact that it models flamdakes place at final times for both cases and for all really
propagation only aty— 0. unstable wavelengths. The growth rate of the instability de-

The global features of the front and their temporal evolu-pends ony (see Ref[2]). For smally it is just proportional
tion for two values ofy=0.8,0.4 as obtained by the Frankel to y. This is reflected particularly in Eq17), which repro-

(b)

-1000 1000 200 300 400 500 600
1000 - 1000 900 A | A A B A 1 Lo 99999 | I AR S S ’_900
500 F500 8004 800
> 0] Fo > 700 700
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FIG. 2. (a) Front pattern fory= 0.8 at different time$=158,309,377,467,586,604. Length and time are measured in Markstein units. The
window (b) is a blowup of a portion of the windowa).
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FIG. 3. Front pattern foy=0.4 in two different scales for the moments of time197,394,592,785,966.

duces the Landau-Darrieus growth rate for smallHow-  can be approximated as (3@0)/y.
ever, a slower development of the instability fpe=0.4 is Self-intersections of the front are another phenomenon
compensated for by a longer time of simulation. that can be easily detected in Fig. 2 but is absolutely not seen
More attentive examination of these pictures reveals thain Fig. 3. We have never observed self-intersections of dis-
there are two quantitative reasons responsible for the strongnt parts of the front foty less than 0.5.
difference between the two patterns. First, the unstable wave-
lengths range foy=0.4 is sufficiently narrower than for the
y=0.8 case. Indeed, the longest unstable wavelength is pro-
portional to+y for a circular flame, whereas the shortest one
is inversely proportional toy. It is a direct consequence of  As shown both by preliminary results of the Frankel equa-
the linear theory(see, for example, Ref3]) and is not so tion simulation and by a special investigation presented be-
interesting from the viewpoint of the nonlinear theory. low, the fractal excesaAD=D —1 of the flame “surface,”
Second, the relative degree of nonlinear saturation, i.ewhich is actually a curve for two-dimensional ambient space,
the ratioh/\, for the y=0.4 case is significantly lower than is very small for smally. But fractal lines with a small
for the y=0.8 case. Heré is a deviation of the front posi- fractal excess have some important peculiarities. To illustrate
tion from the nearest reference circle and a typical wave- them, we consider here the generalized example of a curve
length of disturbances. This fact is more evident in Figp)3 introduced first by von Koch in 1906ee, e.g., Sec. 13.2 in
where a portion of the front is represented with a more ap{36]). This example seems to mirror some basic properties of
propriate scale factor. It is almost evident that this leads to &he results of simulations quoted above. An analogy between
smaller fractal dimension of the front for the smallerThis  Koch triads and the shapes of expanding flames in laboratory
issue will be discussed in some detail in the following sec-experiments was noted [1.1].
tions, but it is worth noticing now that the front fractal di-  The generalized Koch cur, is determined as a limit of
mensionD seems to fall drastically whep decreases down a sequenc¢K, .} (n=1,2...) ofcurvesK,,. Each mem-
to 0.4 or, generally speakin®, seems to depend strongly on berK, , of this sequence is a broken line, consisting of seg-
v, decreasing together witp. If this is so, then it leads to a ments of the same length, and this broken line is constructed
more important influence on the renormalized flame speeftom the previous member of the sequeri€g,_; by an
(3) when the ratio\ . /Ain is sufficiently high than chang- iterative procedure. Each step of the iteration replaces each
ing of this ratio itself. line segment, i.e., each link of the broken likg ,_, by the
There are some other conclusions that can be drawn frorscaled “basic” broken line, which is similar to that depicted
the analysis of the results presented in Figs. 2 and 3. Thim Fig. 4. The geometrical characteristics of this basic broken
longest unstable wavelength is satisfactorily described by théne are defined in Fig. &). The first member of the se-
linear theory for a circular fronf3]. This theory takes into quence is a line segment of unit length. It is useful to intro-
account stretching of disturbances along the front due to itsluce two other geometrical parameters of the basic broken
radial expansion. The shortest wavelength, really unstabliine, namely,(a) the ratio of the length of the segments to the
for finite amplitudes, is determined by a similar effect, butdiameter of the basic line
stretching is caused now by disturbances with longer wave-
lengths, so it is actually some nonlinear effect that was con- 1
sidered in Refs[3,21,4. Our simulations show that the f=o
shortest really unstable wavelength, which is actually;,, 2(1++1-6?)

V. SOME PROPERTIES OF CURVES WITH LOW AD:
EXAMPLES

(26)



4834 SERGEI IV. BLINNIKOV AND PAVEL V. SASOROV

(a)

FIG. 4. (a) Three initial steps of the Koch exampld) The broken lineABCDE, which replaces the upper broken line(@ in the
construction of a generalized Koch cury&B|=|BC|=|CD|=|DE|=I. h=|CF|, =h/l, andf=I/|AE| are the parameters used in the
text.

and(b) the ratio of the total length of the basic broken line to somen. Any line K, , may be treated as a smoothed version
its diameter of the curveK , over spatial scales that are rigorously smaller

4f. (27)

The definition ofé is clearer from Fig. é). Let us recall that
the original Koch curve, Fig. (4), corresponds t@= \/§/2.
The membeK, , of the sequenc¢K, .}, i.e., the member
that is the result off— 1)-fold applications of the iteration,
is the broken line with 3! segments, the length of each
segment(n) being equal to

s(n)=f""1, (29
whereas the total length &€, , is
S(n)=F""1, (29

Owing to its construction, the curug, is self-similar, so
it is a fractal curve whose fractal dimension is equal to

D, = lim[1+10gy/5(n)S(N) ]= 1+ 10gy5n)S(N) = 1+ logyF
n—oo
In(F/f) 2In2
= = . (30
In(1/f)  In2+In(1+1-6?
ThusDKa obeys the asymptotic relations
Dk — (31
’ 1
—p? for 6—0.
1 8in2?

The fractal excesd Dy =D, —1— ¢°/(8In2) wheng—0.

If a point A is a vertex of a broken lin&,,, then A
e Ky. Let us consider two point& and B K, that are
extreme points of the same segment of a brokenKipg for

thans(n). Now let us takem=1 and denoté ,=s(n+m)
for a curveKy . Let S'min(AB) be a distance betweeh
andB alongthe curveKy .. The shortest “wavelength”

of “disturbances” corresponding to the curd€y, ., is
I min=T""™"1 If we definel ,,,=|AB/=f""!to be the order of

the longest wavelength of disturbances that can be placed

betweenA andB, then we have

Dk, 1
) , (32

with Dy, being the same as in E(B0). By the way, one can

give another derivation of E¢32) immediately if one keeps
in mind the definition, generalizing E¢L) for an interval of
a one-dimensional curve.

According to Eq.(31), ADx,—0 when§—0. Hence, if

S,,,,(AB)= |AB|<

1

Imll’1

for ADKG—>O, then

l max

|AB|| 1+ ADIN-"2 .

Imm

S, (AB)= (33

and the relative correction & __(AB) with respect tq AB|

is small.

Let us consider again some poftelonging to the curve
Ky and a circle centered at the po#twith radiusr, so that
the circle intersects the cuni, at least at two points situ-
ated on opposite sides of the cumg relative toA. Choose
the pointsB and C nearest toA alongK, and belonging to

the opposite intersections mentioned above. It is interesting

that owing to the construction ok, the angle between
vectorsAB andCA is small for smallé and of orderd. This
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important fact does not depend on the value @ind is true  should lead to the invariance of the two-point correlation
even for arbitrarily smalt. It does not contradict, however, function in the relevant range of the wave vectors with re-
the statement that in any, even a very small, viciity of ~ spect to this scaling. Then

each poinAe K4, we can find a poinB e O,N K such that

the vectorAB has_ an arbitrary dire_ction. Uﬁ(t): do(2) _l§+ ... for &<|k|<C2. (39)
These properties of the generalized Koch fractal curve can 2 |K| t

be expressed, wheA—0 and AD—O0, by the following N

statements. Heredy(2), C;, andC, are some unknown positive con-

stants, as well a€; (for i=3,4,...) entering the expres-
sions below. They should be of the order of unity since Eq.
t(20) does not contain any large or small coefficients. The
number 2 indy(2) refers to the dimension of the ambient
space in which the flame front propagates.

This important result can be obtained in a more physical
manner(see Ref[8]), which clarifies basic assumptions for
Eq. (39) validity. Let 7(k,t) be the Fourier transform of

(@) The curveK, is very “smooth” on average in arbi-
trarily small scales, whereas it is not differentiable and no
smooth locally.

(b) The distance along the smoothed cukg between
two points A and B belonging to the curveK,, which is
smoothed over the scales less thap, differs only slightly
from the shortest distand@B| between these points while

| s> | ABlexp( — 1/AD), 34 71 and
L , 2k
which is extremely small with respect tdAB| when Zk(xvt):f 7k, tyexpikx)dk (40)
AD—0; see Eq(33). k

(c) The curveK, smoothed over the scales that are less

thanl ,,, can be described by the equation be typical disturbances with the wavelengths of the order of
2wlk for 1lt<k<1. Then it is quite natural that for
y=h(x) with |dh/dx|<1 (35 7 k(X,1) all terms in Eq.(22) are on average equal to each

. . _ . other by the order of magnitude whent&k<1. This natu-
in the proper Cartesian coordinates provided thafobeys  ral assumption leads to E¢39). Notice that the right-hand

the inequality(34). side of EqQ.(22) describes the linear instability, whereas the
We believe that the properti¢a)—(c) are general proper- term (V 7)?/2 corresponds, in distinction to all others, to a
ties of any “normal” fractal curve with smalAD. nonlinear attenuation. If the considered property is expressed
in terms ofh instead ofy, with h being defined analogously
VI. ANALYTIC ESTIMATION OF THE FRACTAL EXCESS to 7 in Eq. (40), then it gives a relation

WITH THE AID OF THE SIVASHINSKY EQUATION —~
Q |ohy/ox|~ 7y (41

Comparing property(c) of the generalized Koch fractal
curve with Egs.(15—(17), one sees that the Sivashinsky for any k belonging to the range #1<k<y.
equation(17), as well as Eq.20), may be a very useful The latter consideration implies that an interaction of dis-
model for the Frankel equatiofil5). For this reason it is turbances with a high value of their typical spatial scale ra-
interesting to consider properties of stochastic solutions ofios, which can be both direct and by means of a cascade,
the Sivashinsky equation in some detail. plays a minor role in the formation of the level of quasista-
Consider a stochastic solution of E@0) for arbitrarily ~ tionary fluctuations relative to interactions of modes with
larget—oo, if a very low noise is supposed as the initial comparable wavelengths and to competition of the latter
condition att=0. Due to the intrinsic instability of E20),  nonlinear process with the linear growth rate. Indeed, Eq.
the strongly nonlinear regime of this instability should take(21) shows only a trivial action of a longer wave on a con-
place at the momeittin the following range of spatial scales sidered one, whereas a shorter wave leads mainly to the front
| velocity renormalization, which is proportional to
((V 7)?)/2 with averaging over the shorter wavelengths. Ad-
1<l<t, (36 ditional arguments illustrating the role of coherent cascade
processes can be obtained by the analysis of exact “lami-
whereas fot>t the growth rate is too low for this instability nar” stationary solutions of Eq22) [29], which should be
to develop appreciably and for<1 strong damping of dis- regularized by the terraV?# (with e —0). The existence of
turbances takes place due to the Markstein diffusion. Thehe cusps in these exact nonlinear solutions leads to a de-
two-point correlation function of the Sivashinsky equationcrease of the noise spectral density at highwhich is

and its Fourier transform may be defined as steeper than suggested by E8P). The contribution of cusps
) , to the noise spectral density is proportional kd)( “In?(kl)
(n(x,t) n(X",1))=G(x=Xx",1), (37 for kI>1, wherel is the distance between the cusps. The

consideration of the Sivashinsky equation presented above
suggests that the fluctuation level near a fixed wavelength is
determined mainly by linear and nonlinear interactions with
fluctuations whose wavelengths are of the order of a fixed
where( ) denotes a certain spatial averaging. The scalingone, but not by direct or indirect interactions with fluctua-
(23) of Eq. (22) or solutions of Eq.20) in the range(36) tions whose wavelengths are much longer or shottér

n()=G(k,t)= %f G(x,t)e"kxdx, (39)
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course, the real dissipation of the fluctuation energy takes AD=dy(2)y? for y—0. (47
place in the region ok=1 only). Thus the Sivashinsky

equation (20) differs qualitatively from the Kuramoto- This almost obvious statement, if we keep in mind Eg8),
Sivashinsky equatiop37], for example, where the interac- (35), (15)—(17), and(46), is, however, in need of additional
tion of modes of very different spatial scales is very impor-arguments.

tant. Let us consider a curv&(t) governed by the Frankel

Using the two-point correlation functiof89), one can  equation(14) for time t—c in the case whery—0, but
find other important properties of the stochastic solutions of

the Sivashinsky equation: N

1
2
~yt>exp——m-. (48
Cit A min AD(7)
([700 = 7(x") ) = do(2) (x=X")In- =or
Let us also divide the whole range of typical wavelengths of
for Cyt>|x—x'|>Cs (42) the front bends X in:Amay IN N subrangesI{_4,l;) with

i=1,2,...,N, sothatly=N\pmyin, In=Nmax, and
(3D ~2dg(2)INCqt for t=>C;, 43 | . .
i .
=Q<min{ ex ,ex ,
Q Pao(2)72 PAD(7)

whered,=(d/9x). The integrals, needed to obtain E¢42) 1< (49

and (43) from the Fourier transform of the two-point corre-
lation function, diverge at upper and lower limits but only |, Q independent of the numbei. For example

logarithmically, as soon as the asymptotic fo(&9) of the g T 7oy NSYZY ;
two-point correlation function is substituted. This allows usquu;Tm{ei(oqllythgo(Z)i]n’teg)égl/ éaDrt( 7)](})f an?nz /b)\em)g
ax’ ymin

to evaluate them successfully with relative accuracy of the Ay Ty : :
order of 1/In. The relationshig43) can be rewritten in the maxyydo(2),VAD(7)} can be admitted as a suitable ex

form ample. For each intervall,(4,l;), consider a curvey;,
which is the result of a smoothing of the cur¥eover scales
(312~ 2do(2)IN(| max! ! min) (44)  Which are less thah ;. If Q is sufficiently high, then the
influence of shorter wavelengths can be taken into account
with the same accuracy if the typical maximum and mini-by introducing a new renormalized seed velocify ; of the
mum wavelengths of disturbances are denoted oy and  curveX,;, which is laminar from the viewpoint of the longer
['min, respectively, witH ., ~t andl ,j,~1. wavelengths. Let us also divide the cuXein curved inter-
Turning now to the unscaled for7) of the Sivashinsky vals of the length;. Each of these intervals a; can be
equation and taking into account the proper rescaling, welescribed with high accuracy by the Sivashinsky equation
notice that the value of(9,h)?)/2 gives the following cor-  (17) (where the last term in the right-hand side may be kept

li-1

rection to the mean front velocity: only as a regularizing factpin the proper Cartesian coordi-
) ) nate systems, with Eq$15) and(16) being valid automati-
Su=u-—Uo=((dxh)“)uo/2=Uodo(2) Y IN(l max/ I min) cally owing to our choice of the s},  n; see the

(45 second argument of min(,) in relatigd9). For these coordi-
nate systems, the angle of rotation with respect to each other
may be arbitrarily large if the distance between relevant in-
tervals is sufficiently large. So the reason why the Sivashin-
S(x, X" )= |x—x'|=|x—=x"[{(3,h)2)/2 sky equation is not an exact model of the Frankel equation
lies in their different properties with respect to rotational
~|x=x"|do(2) ¥2IN(I max/ I min)-  (46)  symmetry of the problem. Thus

whereug=1 in our units, whereas the correction to the front
“length” between pointsx andx’ is

It appears from the viewpoint of the definitigB) that the do(2) . 1 o0 o

fractal excess corresponding to the Sivashinsky equation is hi~ ——1?—5 for —<k<—, (50
exactly equal to zero. This statement contradicts the opinion 2 K] l li-a
expressed in Ref[23], where the value ofAD=0.3 is
claimed. But more attentive examination of the last para
graph of Sec. 4 in Ref23] and of the accompanying Table
1 therein reveals that, for small scaled<7.6 in our nota-
tion, where the fractal excessustbe determined, the value
of AD=0.01 is actually found numerically if23]. Given
numerical noise, this does not contradict our reaull=0
implied by Eq.(46).

Comparing now Eq(46) with Eq. (33), the following
important statement can be formulated. The fractal excess of (51)
the flame front surfacéwhich is actually a curve hergov-
erned by the Frankel equation can be expressed in terms @his equation is a perfect analogy of E@b5). Collecting
the coefficientdy(2) in the asymptotic two-point correlation iteratively all corrections to velocities of the fronks, we
function; see Eq(39): obtain for the front velocity

in accordance with E¢(39), and the renormalized laminar
front velocity u; for X;,, can be expressed through the
renormalized laminar front velocity; _; of X,;, taking into
account the front bends with typical curvature radius being
betweenl;_; andl; in the manner

|.
U=, 1+d0(2)7’2|nﬁ =u;[1+do(2) ¥?InQ].
1+
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u=uy= I Onen %u0=u0[1+d0(2)yzan]N 6000 [ | | [ 5083

Un-1 Un-2  Ug L T~ — |

R A AD r W4739 1

=ugexf do(2) y*NINQ] = ug(Q) > =uo(%“) : : :

mn 5000 — -

(52 L W4149 ]

whereAD is determined by Eq47) and the fourth equality — 3 .

is valid becauseal,(2)y?InQ<1 owing to our construction. s I 1

This consideration does not take into account exactly the 4900 n

scales that are comparable ltg i=1,2, ... ,N. However, I T ]

even In{;.,/l;) is very high for y—0, so this inaccuracy L _

leads to an error in our expression D only of the order L —~—— 70888 1

of y® for y—0. 3000 |- A

We have completed now the derivation of the relationship I ]

between the fractal excess of the Frankel equation solutions —_oig2 ]
and the properties of the two-point correlation function of the [ BN

corresponding Sivashinsky equation. It may be noted here ~2000 ~1000 9 1000 2000
that the property(41) of the stochastic solutions of the
Frankel equation corresponds obviously to the construction g 5 part of the whole front “circle” fory=0.35 at different

of the generalized Koch curve in Sec. V, so ti#atan beé  moments of time labeling the curves. This picture should be imag-
compared withy by the order of magnitude, wheft and  jned to be continued periodically onto the whole circle to obtain the
y—0. From this point of view, a certain analogy betweenpattern of the whole front whose center isxat 0, y=0.
Egs.(31) and(47) is no wonder. The proposal of E() was
used in Ref[8] and that is why we consider the generalizedtion is highly desirable to check the functional form of Eq.
Koch construction in some detail. This illustration is needed8) and to evaluate the constabf. To do this for lowy we
to show the development of large angles between normals teeed to continue our runs for a much longer time than is
the perturbed and unperturbed fronts even for a very smalleasonable with the full quasicircular mesh used to produce
y. There are two properties of the generalized Koch curverigs. 2 and 3. We have developed a special version of our
(with a small height of its basic elemegrhat make it impor-  code that allows us to follow the evolution of flames up to
tant for the flame problenti) its basic element is similar to times of a few thousantin Markstein units.
a saturated LD wave near the minimum nonlinearly unstable Qur simulations of the Frankel equation fpr=0.3, 0.35,
wavelength andii) the ratio of the amplitude of the saturated and 0.4 with this version of the code are presented here. To
“plane” LD wave to its length is the same on all larger keep the used CPU time of the Cray Y-MP supercomputer in
scales, similar to the Koch curve. This analogy helps us t@he limits of a few hours even foy=0.3 under the condition
understand that there is no paradox in applying nonfractahat the front develops for a sufficiently long time in a satu-
Sivashinsky equation to fractal flames. As discussed in thigated nonlinear regime of the LD instability, we simulate
section, we apply the Sivashinsky equation only to aonly a part of a whole “circle” of the front, continuing the
smoothed flame with renormalized speed and in a propesolution periodically onto the whole circle. It is justified be-
Cartesian system where there are no large angles and R@use the disturbances with sufficiently low azimuthal wave
fractal behavior because of the smoothing. numbersm do not grow in accordance with the linear theory
The main results of this section can be summarized agf the LD instability for low y due to the stretching effect
follows. [3,30]. (See also Fig. 3.The sector, where the flame propa-
(i) The fractal excess of the flame front governed by thegation is actually simulated, is/2m,, with my=18,15,13
Frankel equation is proportional tpz; see Eq.(8). for y=0.3,0.35,0.4, respectively. The initial radiusis per-
(i) The coefficient in Eq(8) can be expressed in terms of turbed according to the expression
the asymptotic form of the two-point correlation function of

the Sivashinsky equation L2

Srlrg=0.05y2>, 27 "cog2"mye—2mr,),  (54)
Do=do(2), (53 e

though the fractal excess for the Sivashinsky equation itself*here¢ is the azimuthal angle,,[0,1] is a random num-
is equal to zero. ber, andry=~500- 750 for y=0.4—0.3. The front patterns at

different moments of time foyy=0.35 in these series of our
simulations are shown in Fig. 5 as an example.

The main goal of this simulation series is to determine the
We have no opportunities to findy(2) in Eq.(39) ana- dependence of the fractal exces® on the expansion de-
lytically, in order to determin®, with the help of Eq(53).  greey. The relevant results are displayed in Fig. 6 and in
Moreover, some considerations in Secs. Il and VI cannot bdable |I. Though the best power fit to these results is
considered as rigorous proofs from a mathematical point oAD=0.53y?®, the square dependence®b on y [see Eq.

view. For these reasons the simulation of the Frankel equa47)] and the approximatio(8) with

VII. FURTHER SIMULATIONS AND ESTIMATION OF D,
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Another way to estimat® is to form (for a given mo-

0.05
mentt,) an array of mean lengths of the front segments
between the mesh points with numbers differingjby
0.04 A
2N/2 i+]
do(j) =% S 58
0.03 - ) ;1 k;—l “ 8
S
< for j=1,2,...N/2. One can also form an array of mean
0.02 7 distances of the same pairs of points:
0.01 N/2
‘ dr())= g2 L6 =X *+ iy P12 (89)
0.00 , , . . , . . .
00 01 02 03 04 05 Now the mean slope of the relationdyj)—Ind,(j) would

v give another estimate of the fractal dimension. This estimate
can be done for only a few moments of tilgewhen we save
FIG. 6. Fractal excessAD) dependence on the expansion de- the data for all mesh points, contrary to the estimate based on
gree (y) obtained from our simulations of the Frankel equationthe Ins(t,)—Inr(t,) relation, which is based on averaging
(open circleg and different numbered fitsolid lines. Line 1 cor-  over many thousands of momertts. Moreover, the proce-
responds to the best power fitD = 0.53y%9), 2 to the best-squares dure described by Eq$58) and (59) tends to underestimate

fit (AD=0.28y?), and 3 to Eq(8) with D;=0.3. the value of the fractal exceasD.
It is worth discussing here two important items of the
Do=d(2)~0.3 (55 Frankel equation simulation technique. The first one is a

problem of self-intersections and the second one is the main
do not contradict them, taking into account possible inaccusource of the uncertainties &fD calculation.
racies of simulations, whereas the best-squares fit is It can be seen from our results that a typical pattern of the
AD=0.28y%. We think that the accuracy of our estimation front curve just before a self-intersection can be sketched by
of Dy is not too high and may be estimated as 50%. For thishe left-hand side of Fig. 1. See also a “real” example in
reason it is worth submitting here our procedure of calculafig. 2. A self-intersection arises when one or even more
tion of D based on the results of the Frankel equation simu*elementary” disturbances having the shape of an arc, being

lations. convex toward the direction of the front propagation, are
Using the mesh point coordinat&s,y; we define near the vertex of a deep cusp. Let us approximate the shape
of the cusps by exact solutiof29] of the Sivashinsky equa-
si=[(x—xi—1)?+(yi—yi-1)?]" (56)  tion. They are valid for our purpose at sufficient distance

from the cusp, where the front slope relative to the reference
fori=2,3,... N and calculate the total length of the front straight line is small with respect to unity. In the region
sector used in simulations(t,,) =S{L,s;, for a discrete set whose distance from the cusp vertex is at the same time
of ime moments{t,,} covering the whole time interval of much less than the typical distankebetween the deepest

simulation. For the same sfti,,} we save the values of the cusps, the front shape can be expressed, in accordance with

mean radius (t,,), defined by the relation the exact solutionf29], as
— . 2,2 le
2= (x+y?)IN. (57 y=F(X—Xc)=y|X—X¢[Ing——. (60)
i=1 2|X_Xc|

Then we find the least-squares linear fit to the relationA typical length of the shortest elementary disturbances,
Ins(t,)—Inr(t,) and the slope of the fit gives us the value of which is|CD| in Fig. 1, is of the order of 3/, see Sec. IV.

D actually used in our results presented in Fig. 6 and inA self-intersection can really take place only when the slope
Table I. of the front to the reference line is at least of the order of

TABLE I. Simulated fractal dimensioB of the front surface governed by the Frankel equatibt as a
function of the expansion degree

v D) Best power fit Best-squares fit Eq.(8)°
0.3 1.022 1.023 1.025 1.027
0.35 1.039 1.036 1.034 1.037
0.4 1.046 1.049 1.045 1.048
"AD=0.53y25,
PAD =0.28)%.
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unity or even more at the distance [@D|~30/y from a its form with the old definition of%Z: 7= divn)|; s , SO
deep cusp. This condition corresponds to the inequality 7 is now the sum of the principal values of the surface
curvature. Equatioril4) should be replaced by

YR 1
In—7=—, (61 . ..
60 v U(x,t)=1— divn(x,t)
wherel is replaced by the maximum unstable wavelength y 1 (X—&)-n(X.b)
andR is the mean radius of the front. This condition for the — —( - +d2§ . (69
R available, i.e., for the physical time available in our simu- 2 2mlsw  x—¢€3

lations, can be fulfilled only whery=0.5. This agrees with ) ) ) )
the fact of the absence of self-intersections in our simulation&) the Sivashinsky equations of different forfigs. (18),
when y<0.5. Almost the same consideration allows us to(20: @nd(22)], the functionsh(x,t), 7(x.t), and the opera-

estimate the longest perimetsl, of the detached drops of O ¢/dx should be replaced obviously byi(xy.t),
unburned matter n(x,y,t), and the nabla operatdt [in (x,y) spacé, respec-

tively, and the factor 1/(#) in the definition ofl{}, Eq.
(18), should be replaced by 1/¢8). Thus Eq.(20) has the
following form in the three-dimensional case:

Thus the contribution of the lengths of the detached drops

perimeter, which appear due to self-intersections, decreases 7 1

proportionally as expt1/y), i.e., faster than any power of —taV n)?=1{n}+V?n. (65

v, when y—0. Taking into account our main resyB), it

can be seen that self-intersections play only a minor role in - The main results of Sec. VI do not depend seriously on
the front acceleration whep<1. the space dimension. The Fourier transform of the two-point

The same peculiaritieksee Eq.(60)] of the cusp shape correlation functionG(vT/)—< oY :
e - =(n(x) n(x+w)) should have in
lead, however, to other difficulties of the Frankel equationy, similarity range the asymptotic form

simulations. Only comparatively small regions near the
cusps, whose length is only about 1/10 of the distance be-

tween the cusps of considered depth, are responsible for the 2 N
main contribution to the front length correction in the T 2w KA
Sivashinsky approximation. In our simulatiorigiven the

number of mesh points, CPU time, étthis distance is com- Wheredy(3) is again an unknown positive constant. As a
parable to the shortest unstable wavelength, for which théesult, Eqs(42), (43), and(44) should be replaced by
Markstein diffusivity plays a noticeable role in contrast to

long-wavelength disturbances, wheg.,/\min—2°. Then the . . 1 N
accuracy of the self-similarity of the front curve is rather {[ 7(X)— 7I(X')]2>*§do(3)(X—X')2|n
low. As a result, different methods of the fractal excess cal-

culations, which are equal to each other when

N max/Amin—, give somewhat different results. It was easily for C11t>|>2— ;,|>C12a (67)
detected by us and determines actually the accurady ,of
quoted above.

Hy~lcexpl—1/y). (62

do(3) 1

Cs
- for T<k<C9, (66)

C 10t

X=x']

((V)?)~2do(3)InCagt, (68)
VIIl. THE FRONT SURFACE

IN THREE-DIMENSIONAL SPACE and

In the foregoing we considered only the two-dimensional [
case, when the front corresponds to a curve in two- {(V 17)2>~2do(3)ln|m—ax, (69
dimensional space. Almost all resulisith the obvious ex- min
ception of the results of simulationsan be generalized on
the three-dimensional case, when the front is represented a
surface, which is denoted in this section againSasWe
introduce here the main equations in the three-dimensionz\ilv
case without repeating detailed explanations.

Equation (11) should be replaced by

respectively. Thus, for the fractal dimension of a front gov-
%fhed by the Frankel equation we can wik® =dq(3)?,

hen y—0.

The Sivashinsky equatiai®5) governing the front surface

in the three-dimensional space has the following interesting
property quoted in Ref.30]. If »="f(x,t) and »="f,(x,t)

are arbitrary general solutions of E@OQ), then

U(x,t)= Y _ l(J(i,t)
Po 2pp n(X,y, 1) =f1(x,1) +f,(y,1) (70

> (X=&)-n(x,t) is a solution(but only a particular oneof Eq. (65). Inserting

T o z(t)J(é,t)Wdif . 63 this particular solution in Eqs(68) and (69), we find that

they keep their validitybecause of Eqg45) and(46)] after
wheredZ., is a differential of area ok. Equation(13) keeps  substituting 21,(2) instead ofdy(3). Assuming that statisti-
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cal properties of the solutiof¥0) can approximate, to a cer- Sivashinsky approach. As a result, a region of a complicated
tain degree, the properties of a general solution, we can writgortical turbulent motion may always exist far enough be-
do(3)=2dy(2) with the same degree of accuracy. Hence thenind the front. A turbulent cascade of vortices can generate
fractal dimension of the front surface governed by Ef)  the noise needed, so the flame may well be self-organized
can be approximated as the double fractal dimension of th@iith scales dictated by the LD instability.
front curve governed by Eq14), when y—O0. There is another consequence of the vortex generation. A
magnitude of the generated vorticity increases in accordance
with Eq. (10), when the expansion degree grows. So a
region of a complicated vortical turbulent motion extends in
The main result of this work is that the flame front the upstream direction and can absorb the flame front when
wrinkled by the Landau-Darrieus instability can be approxi-y exceeds some critical value. This can be examined with the
mated in a certain range of spatial scales by a fractal surfacgid of results of the two-dimensional numerical simulations
whose fractal dimension excess tends to zero in accordangferformed by Niemeyer and Hillebrangiee Ref[9]). They
with Eg. (8), when the expansion degreetends to zero. sjmulated full hydrodynamics of the burning front propaga-
More complete general conclusions are quoted in the Introion as well as processes of burning itself and heat transport
duction and the coefficient of the asymptotic relati@ is  (put using out of necessity a rather small physical size of a
considered in Sec. VII. simulated region For small y (when y=<0.3), the front

" The _result.T.toI_our nun|1er|_cal sgglatlonts) agree Wetl:qw'thshape obtained in Ref9] is quite similar to that obtained
€ main qualitative conclusion ¢£3]: we observe, as they here. However, our investigation corresponds to a signifi-

do, the phenomenon of cell splitting, which is observed also : . .
experimentally for expanding flamdd1]. One should re- cantly wider range of spatial scales owing to the use of the

member that in Ref[23] a version of the front equation is E;Z?;Etleﬁg#?g%?’ﬂ:’; hflﬁir:ngllows us to evaluate the fractal
used that is not strictly equivalent to the original Sivashinsk -
Y €4 g y From the results of Ref9] it may be concluded that for

equation (17): Filyand et al.[23] modify the equation in or- o o2
der to include the effects of sphericity of an expanding flame=0-5 the gas motion in the vicinity of the front becomes

We have presented arguments showing that the fractal excelgbulent. If this turbulence acts on the flamg front 'similarly
of wrinkled flames modeled with the Sivashinsky equationt© the external turbulence, then the fractal dimension of the
(17) is zero. As we have noted, this does not contradict thdlame should be equal to 7/3 in three-dimensional siisee
results of[23] for small segments of their simulated flame, Ref. [14]), when y=0.5. The value 7/3 seems to be in ac-
where Eq.(17) is applicable. cordance with the experimental results reviewed in Rif].

An interesting guestion arises when we compare our re- However, it is not clear at present what the primary rea-
sults with those of Joulifid30]. He derived rigorously a modi- son for growing turbulence observed in RE] for y=0.5
fication of the Sivashinsky equation for spherical flamesis. It could be just the tendency of front to self-intersection,
(structurally equivalent to that used [i@3]) but, contrary to  which we find exactly fory=0.5. If so, then the vorticity
[23] and to our simulations of the Frankel equation, he foundplays only a secondary role, since it is completely ignored in
(using the pole decomposition method aq28]) that there  our numerical experiments and analytical estimates. The es-
was no tendency to repeated cell splitting. The Frankel equaimates presented in Ref38] do show that vortical self-
tion is not equivalent to the equations used 28,30, but  y,hylence is rather mild. It would be very interesting to
one cannot exclude that the effect of cell splitting found her‘?nvestigate this question in more detail, relaxing the approxi-

and in[23] is produced by ngmerical noise. Besides ever-nation of potential flow, which is suspicious fgr=0.5.
present rounding and truncation errors, the spectral method

used in[23] generates noise whenever the number of the
Fourier harmonics is changed, whereas our technique pro-
duces perturbations when we remove or insert mesh points.
Since perturbations of a very smatiexponentially” small) )
amplitude are detected and amplified by the Landau instabil- We are grateful to M. Basko, W. Hillebrandt, B. Meerson,
ity, it is no wonder that new corrugations appear repeatedly- Niemeyer, G.I. Sivashinsky, and S.E. Woosley for valu-
in numerical modeling. A less trivial task is to find out if this able discussions and for providing us with information on
spontaneous tendency is closer to real flames than a mudheir results prior to publication. N. Ardelyan, O. Bartunov,
more laminar behavior predicted by semianalytic solutionsand E. Muler gave us very useful help and advice on our
[30]. numerical work. Part of the work was done during S.B.’s

Joulin [30] writes about the external noise for re@lot  visits to University of California, Santa Cruz, and to Max
numerical flames: “It is difficult to imagine why this noise Planck Institut fu Astrophysik, Garching, and he is grateful
should be compatible with large-scale, angular periodicityto S.E. Woosley and to W. Hillebrandt for their hospitality.
corresponding to ai®(1), but otherwise arbitrary, sector; Max Planck Institute allocated Cray Y-MP computer time.
instead a fixed, small-scale, average spatial size is expectethis work is supported in part by the Russian Foundation for
especially if the noise has a hydrodynamic origin.” We can-Fundamental Resear¢@®rant Nos. 93-02-17114 and 94-01-
not agree that the latter statement is always true: the hydrd®1649 and by International Scien¢8oros Foundation. The
dynamic noise must not be necessarily of the external originwork of S.B. is supported by the National Science Founda-

One should not forget that the vorticity arises on thetion (Grant No. AST-91-15367and by NASA(Contract No.
wrinkled front, which is neglected in the Frankéaind NAGW-2525.

IX. DISCUSSION
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